Quantum geometry, matrix theory, and gravity:
Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework hel...
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore
Cambridge University Press
2024
|
Subjects: | |
Online Access: | Inhaltsverzeichnis |
Summary: | Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework helps explain the physics of Yang-Mills-type matrix models, leading to a quantum theory of space-time and matter. This novel framework is then applied to Matrix Theory, which is defined through distinguished maximally supersymmetric matrix models related to string theory. A mechanism for gravity is discussed in depth, which emerges as a quantum effect on quantum space-time within Matrix Theory. Using explicit examples and exercises, readers will develop a physical intuition for the mathematical concepts and mechanisms. It will benefit advanced students and researchers in theoretical and mathematical physics, and is a useful resource for physicists and mathematicians interested in the geometrical aspects of quantization in a broader context. |
Physical Description: | xvi, 402 Seiten |
ISBN: | 9781009440783 |
Staff View
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049880261 | ||
003 | DE-604 | ||
005 | 20250213 | ||
007 | t| | ||
008 | 240923s2024 xx |||| 00||| eng d | ||
020 | |a 9781009440783 |9 978-1-009-44078-3 | ||
035 | |a (OCoLC)1439300991 | ||
035 | |a (DE-599)BVBBV049880261 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a Steinacker, Harold C. |d 1968- |e Verfasser |0 (DE-588)1334229414 |4 aut | |
245 | 1 | 0 | |a Quantum geometry, matrix theory, and gravity |c Harold C. Steinacker, University of Vienna, Austria |
264 | 1 | |a Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore |b Cambridge University Press |c 2024 | |
300 | |a xvi, 402 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework helps explain the physics of Yang-Mills-type matrix models, leading to a quantum theory of space-time and matter. This novel framework is then applied to Matrix Theory, which is defined through distinguished maximally supersymmetric matrix models related to string theory. A mechanism for gravity is discussed in depth, which emerges as a quantum effect on quantum space-time within Matrix Theory. Using explicit examples and exercises, readers will develop a physical intuition for the mathematical concepts and mechanisms. It will benefit advanced students and researchers in theoretical and mathematical physics, and is a useful resource for physicists and mathematicians interested in the geometrical aspects of quantization in a broader context. | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrix-Modell |0 (DE-588)4518453-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stringtheorie |0 (DE-588)4224278-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gravitation |0 (DE-588)4021908-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Geometric quantization | |
653 | 0 | |a Gravity / Mathematical models | |
653 | 0 | |a String models | |
653 | 0 | |a Matrices | |
689 | 0 | 0 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 0 | 1 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 2 | |a Matrix-Modell |0 (DE-588)4518453-7 |D s |
689 | 0 | 3 | |a Gravitation |0 (DE-588)4021908-2 |D s |
689 | 0 | 4 | |a Stringtheorie |0 (DE-588)4224278-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-009-44077-6 |
856 | 4 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |u https://bvbr.bib-bvb.de:443/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035219638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |z Inhaltsverzeichnis | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035219638 |
Record in the Search Index
_version_ | 1831470582352314368 |
---|---|
adam_text | |
any_adam_object | |
author | Steinacker, Harold C. 1968- |
author_GND | (DE-588)1334229414 |
author_facet | Steinacker, Harold C. 1968- |
author_role | aut |
author_sort | Steinacker, Harold C. 1968- |
author_variant | h c s hc hcs |
building | Verbundindex |
bvnumber | BV049880261 |
classification_rvk | UO 4000 |
ctrlnum | (OCoLC)1439300991 (DE-599)BVBBV049880261 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV049880261</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250213</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240923s2024 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009440783</subfield><subfield code="9">978-1-009-44078-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1439300991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049880261</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steinacker, Harold C.</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1334229414</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum geometry, matrix theory, and gravity</subfield><subfield code="c">Harold C. Steinacker, University of Vienna, Austria</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 402 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework helps explain the physics of Yang-Mills-type matrix models, leading to a quantum theory of space-time and matter. This novel framework is then applied to Matrix Theory, which is defined through distinguished maximally supersymmetric matrix models related to string theory. A mechanism for gravity is discussed in depth, which emerges as a quantum effect on quantum space-time within Matrix Theory. Using explicit examples and exercises, readers will develop a physical intuition for the mathematical concepts and mechanisms. It will benefit advanced students and researchers in theoretical and mathematical physics, and is a useful resource for physicists and mathematicians interested in the geometrical aspects of quantization in a broader context.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix-Modell</subfield><subfield code="0">(DE-588)4518453-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stringtheorie</subfield><subfield code="0">(DE-588)4224278-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gravitation</subfield><subfield code="0">(DE-588)4021908-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Gravity / Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">String models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Matrices</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Matrix-Modell</subfield><subfield code="0">(DE-588)4518453-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gravitation</subfield><subfield code="0">(DE-588)4021908-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Stringtheorie</subfield><subfield code="0">(DE-588)4224278-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-44077-6</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="u">https://bvbr.bib-bvb.de:443/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035219638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="z">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035219638</subfield></datafield></record></collection> |
id | DE-604.BV049880261 |
illustrated | Not Illustrated |
indexdate | 2025-05-07T14:00:55Z |
institution | BVB |
isbn | 9781009440783 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035219638 |
oclc_num | 1439300991 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xvi, 402 Seiten |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Steinacker, Harold C. 1968- Verfasser (DE-588)1334229414 aut Quantum geometry, matrix theory, and gravity Harold C. Steinacker, University of Vienna, Austria Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore Cambridge University Press 2024 xvi, 402 Seiten txt rdacontent n rdamedia nc rdacarrier Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework helps explain the physics of Yang-Mills-type matrix models, leading to a quantum theory of space-time and matter. This novel framework is then applied to Matrix Theory, which is defined through distinguished maximally supersymmetric matrix models related to string theory. A mechanism for gravity is discussed in depth, which emerges as a quantum effect on quantum space-time within Matrix Theory. Using explicit examples and exercises, readers will develop a physical intuition for the mathematical concepts and mechanisms. It will benefit advanced students and researchers in theoretical and mathematical physics, and is a useful resource for physicists and mathematicians interested in the geometrical aspects of quantization in a broader context. Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Matrix-Modell (DE-588)4518453-7 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Stringtheorie (DE-588)4224278-2 gnd rswk-swf Gravitation (DE-588)4021908-2 gnd rswk-swf Geometric quantization Gravity / Mathematical models String models Matrices Geometrische Quantisierung (DE-588)4156720-1 s Quantenfeldtheorie (DE-588)4047984-5 s Matrix-Modell (DE-588)4518453-7 s Gravitation (DE-588)4021908-2 s Stringtheorie (DE-588)4224278-2 s DE-604 Erscheint auch als Online-Ausgabe 978-1-009-44077-6 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment https://bvbr.bib-bvb.de:443/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035219638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Steinacker, Harold C. 1968- Quantum geometry, matrix theory, and gravity Quantenfeldtheorie (DE-588)4047984-5 gnd Matrix-Modell (DE-588)4518453-7 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Stringtheorie (DE-588)4224278-2 gnd Gravitation (DE-588)4021908-2 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4518453-7 (DE-588)4156720-1 (DE-588)4224278-2 (DE-588)4021908-2 |
title | Quantum geometry, matrix theory, and gravity |
title_auth | Quantum geometry, matrix theory, and gravity |
title_exact_search | Quantum geometry, matrix theory, and gravity |
title_full | Quantum geometry, matrix theory, and gravity Harold C. Steinacker, University of Vienna, Austria |
title_fullStr | Quantum geometry, matrix theory, and gravity Harold C. Steinacker, University of Vienna, Austria |
title_full_unstemmed | Quantum geometry, matrix theory, and gravity Harold C. Steinacker, University of Vienna, Austria |
title_short | Quantum geometry, matrix theory, and gravity |
title_sort | quantum geometry matrix theory and gravity |
topic | Quantenfeldtheorie (DE-588)4047984-5 gnd Matrix-Modell (DE-588)4518453-7 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Stringtheorie (DE-588)4224278-2 gnd Gravitation (DE-588)4021908-2 gnd |
topic_facet | Quantenfeldtheorie Matrix-Modell Geometrische Quantisierung Stringtheorie Gravitation |
url | https://bvbr.bib-bvb.de:443/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035219638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT steinackerharoldc quantumgeometrymatrixtheoryandgravity |