Commutative algebra methods for coding theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2024]
|
Schriftenreihe: | De Gruyter studies in mathematics
Volume 97 |
Schlagworte: | |
Online-Zugang: | https://www.degruyter.com/isbn/9783111212920 Inhaltsverzeichnis |
Beschreibung: | IX, 264 Seiten Illustrationen 24 cm x 17 cm |
ISBN: | 9783111212920 3111212920 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV049773948 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 240709s2024 gw a||| |||| 00||| eng d | ||
015 | |a 24,N04 |2 dnb | ||
016 | 7 | |a 1316694755 |2 DE-101 | |
020 | |a 9783111212920 |c : EUR 119.95 (DE) (freier Preis), EUR 119.95 (AT) (freier Preis) |9 978-3-11-121292-0 | ||
020 | |a 3111212920 |9 3-11-121292-0 | ||
024 | 3 | |a 9783111212920 | |
035 | |a (OCoLC)1443487257 | ||
035 | |a (DE-599)DNB1316694755 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T | ||
084 | |8 1\p |a 510 |2 23sdnb | ||
100 | 1 | |a Tohǎneanu, Ştefan Ovidiu I. |e Verfasser |0 (DE-588)1333533462 |4 aut | |
245 | 1 | 0 | |a Commutative algebra methods for coding theory |c Ştefan Ovidiu I. Tohǎneanu |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2024] | |
300 | |a IX, 264 Seiten |b Illustrationen |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics |v Volume 97 | |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Codierung |0 (DE-588)4141834-7 |2 gnd |9 rswk-swf |
653 | |a Mindestabstand | ||
653 | |a Dimension eines Ideals | ||
653 | |a Duale lineare Formen | ||
653 | |a Bewertungscode | ||
653 | |a Minimum distance | ||
653 | |a height of an ideal | ||
653 | |a dual linear forms | ||
653 | |a fat points | ||
653 | |a evaluation code | ||
653 | |a socle degree. | ||
689 | 0 | 0 | |a Algebraische Codierung |0 (DE-588)4141834-7 |D s |
689 | 0 | 1 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 9783111214795 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 9783111215389 |
830 | 0 | |a De Gruyter studies in mathematics |v Volume 97 |w (DE-604)BV000005407 |9 97 | |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/isbn/9783111212920 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035115071&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a vlb |d 20240120 |q DE-101 |u https://d-nb.info/provenance/plan#vlb | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035115071 |
Datensatz im Suchindex
_version_ | 1816956184899354624 |
---|---|
adam_text |
CONTENTS
1
INTRODUCTION
-
1
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.3
2.3.1
2.3.2
2.3.3
2.3.4
PRELIMINARIES
-
5
CODING
THEORY
-
5
GENERALITIES
-
5
NEAREST
NEIGHBOR
ALGORITHM
AND
PERFECT
CODES
-
8
BOUNDS
-
10
GENERALIZED
HAMMING
WEIGHTS
-
11
WEIGHT
DISTRIBUTION
AND
WEIGHT
ENUMERATOR
-
12
CYCLIC
CODES
-
13
COMMUTATIVE
ALGEBRA
-
17
GENERALITIES
-
17
CHAIN
CONDITIONS
ON
MODULES
-
19
GRADED
RINGS
AND
MODULES,
RINGS
OF
POLYNOMIALS
-
21
RINGS
OF
FRACTIONS
-
23
PRIMARY
DECOMPOSITION
-
24
DIMENSION
THEORY
-
26
SOME
ALGEBRAIC
GEOMETRY
-
28
HILBERT
FUNCTION
AND
DEGREE
-
36
GRADED
FREE
RESOLUTIONS
-
39
MONOMIAL
ORDERS
-
51
COMBINATORICS
-
61
SIMPLICIAL
COMPLEXES
-
61
MATROIDS
-
65
HYPERPLANE
ARRANGEMENTS
-
67
WEIGHT
ENUMERATORS
AND
HYPERPLANE
ARRANGEMENTS
-
71
3
3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.4
IDEALS
GENERATED
BY
FOLD
PRODUCTS
OF
LINEAR
FORMS
-
73
IDEALS
GENERATED
BY
A-FOLD
PRODUCTS
OF
LINEAR
FORMS
-
74
THE
DE
BOER-PELLIKAAN
METHOD
FOR
COMPUTING
MINIMUM
DISTANCE
-
76
MINIMUM
DISTANCE
AND
HEIGHTS
OF
IDEALS
-
76
GENERALIZED
HAMMING
WEIGHTS
-
79
PROJECTIVE
CODEWORDS
OF
MINIMUM
WEIGHT
-
81
PARITY-CHECK
MATRIX
APPROACH
-
83
PRIMARY DECOMPOSITION
APPROACH
-
84
MINIMAL
CODEWORDS
-
86
PRIMARY
DECOMPOSITION
OF
IDEALS
GENERATED
BY
A-FOLD
PRODUCTS
OF
LINEAR
FORMS
-
89
3.4.1
3.4.2
THE
GENERAL
CASE
-
92
STAR
CONFIGURATIONS
-
98
3.5
AN
ERROR-CORRECTION
ALGORITHM
-
100
3.6
LINEAR
CODES
INTERPOLATION
-
103
3.6.1
SUBSPACE
ARRANGEMENTS
AND
SUBCODES
-
105
3.6.2
INTERPOLATING
FAT
POINTS
IN
P-1
-
106
3.6.3
INTERPOLATING
REDUCED
POINTS
WITH
GIVEN
REGULARITY
-
109
3.7
MINIMUM
DISTANCE
AS
THE
INITIAL
DEGREE
-
116
3.7.1
THE
FITTING
MODULE
OF
A
LINEAR
CODE
-
117
3.7.2
A
BINARY
ASSOCIATED
GRADED
ALGEBRA
-
119
4
FAT
POINTS
DEFINING
LINEAR
CODES
-
122
4.1
GEOMETRY
OF
MINIMUM
DISTANCE
-
123
4.2
THE
MINIMUM
DISTANCE
AND
THE
INITIAL
DEGREE
OF
POINTS
-
126
4.2.1
THE
REDUCED
CASE
-
127
4.2.2
THE
FAT-POINTS
CASE
-
132
4.3
THE
MINIMUM
DISTANCE
AND
THE
MINIMUM
SOCLE
DEGREE
-
134
4.3.1
THE
CASE
OF
REDUCED
COMPLETE
INTERSECTIONS
-
140
4.4
ADDITIONAL
RESULTS
FOR
SPECIFIC
SITUATIONS
-
143
4.4.1
MINIMUM
DISTANCE
AND
THE
INDEX
OF
NILPOTENCY
-
143
4.4.2
CONFIGURATIONS
OF
POINTS
ASSOCIATED
TO
STEINER
SYSTEMS
-
146
4.4.3
FAT
POINTS
HAVING
COMPLETE
INTERSECTION
SUPPORT
-
149
5
EVALUATION
CODES
-
154
5.1
REED-MULLER
CODES
-
156
5.1.1
ALGEBRAIC
GEOMETRIC
AND
TORIC
CODES
-
161
5.1.2
AFFINE
VARIETY
CODES
-
164
5.2
EVALUATION
CODES
-
171
5.2.1
EVALUATION
CODES
OF
MINIMUM
DISTANCE
ONE
-
173
5.2.2
POINTS
IN
GENERAL
LINEAR
POSITION
-
175
5.2.3
GENERALIZED
HAMMING
WEIGHTS
OF
EVALUATION
CODES
-
179
5.2.4
CODES
CONSTRUCTED
FROM
GRAPHS
-
183
5.3
PARAMETERIZED
CODES
-
186
5.3.1
DEFINING
IDEALS
OF
TORIC
SETS
-
187
5.3.2
TECHNIQUES
FOR
PARAMETERIZED
CODES
-
190
5.3.3
CODES
PARAMETERIZED
BY
PROJECTIVE
TORUS
-
193
5.3.4
CODES
PARAMETERIZED
BY
GRAPHS
-
195
5.3.5
VERONESE
TYPE
CODES
-
200
5.4
AFFINE
CARTESIAN
CODES
-
201
5.4.1
PROJECTIVE
NESTED
CARTESIAN
CODES
-
204
5.5
THE
DUAL
OF
AN
EVALUATION
CODE
-
205
5.5.1
SELF-DUAL
CODES
AND
GALE
TRANSFORMS
-
209
5.5.2
INITIAL
DEGREE
OF
INVERSE
SYSTEMS
-
211
6
6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
ADDITIONAL
TOPICS
-
212
MINIMUM
DISTANCE
AND
INITIAL
DEGREES
OF
COMBINATORIAL
ALGEBRAS
-
213
STANLEY-REISNER
RING
OF
MATROIDS
OF
GENERATOR
MATRICES
-
214
THE
ORLIK-TERAO
ALGEBRA
-
220
MINIMUM
DISTANCE
FUNCTIONS
-
226
FOOTPRINT
FUNCTION
-
229
THE
V-NUMBER
OF
A
GRADED
IDEAL
-
233
THE
CAYLEY-BACHARACH
CONJECTURES
AND
THE
MINIMUM
DISTANCE
FUNCTION
-
237
6.2.4
RELATIVE
GENERALIZED
MINIMUM
DISTANCE
FUNCTIONS
-
240
BIBLIOGRAPHY
-
245
INDEX
OF
NOTATIONS
-
253
INDEX
-
257 |
any_adam_object | 1 |
author | Tohǎneanu, Ştefan Ovidiu I. |
author_GND | (DE-588)1333533462 |
author_facet | Tohǎneanu, Ştefan Ovidiu I. |
author_role | aut |
author_sort | Tohǎneanu, Ştefan Ovidiu I. |
author_variant | ş o i t şoi şoit |
building | Verbundindex |
bvnumber | BV049773948 |
ctrlnum | (OCoLC)1443487257 (DE-599)DNB1316694755 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cb4500</leader><controlfield tag="001">BV049773948</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240709s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">24,N04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1316694755</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111212920</subfield><subfield code="c">: EUR 119.95 (DE) (freier Preis), EUR 119.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-121292-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3111212920</subfield><subfield code="9">3-11-121292-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783111212920</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1443487257</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1316694755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">510</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tohǎneanu, Ştefan Ovidiu I.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1333533462</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutative algebra methods for coding theory</subfield><subfield code="c">Ştefan Ovidiu I. Tohǎneanu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 264 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">Volume 97</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Codierung</subfield><subfield code="0">(DE-588)4141834-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mindestabstand</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension eines Ideals</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Duale lineare Formen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bewertungscode</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Minimum distance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">height of an ideal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dual linear forms</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fat points</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">evaluation code</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">socle degree.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Codierung</subfield><subfield code="0">(DE-588)4141834-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">9783111214795</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">9783111215389</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">Volume 97</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">97</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783111212920</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035115071&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20240120</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035115071</subfield></datafield></record></collection> |
id | DE-604.BV049773948 |
illustrated | Illustrated |
indexdate | 2024-11-28T09:00:47Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783111212920 3111212920 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035115071 |
oclc_num | 1443487257 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | IX, 264 Seiten Illustrationen 24 cm x 17 cm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter studies in mathematics |
series2 | De Gruyter studies in mathematics |
spelling | Tohǎneanu, Ştefan Ovidiu I. Verfasser (DE-588)1333533462 aut Commutative algebra methods for coding theory Ştefan Ovidiu I. Tohǎneanu Berlin ; Boston De Gruyter [2024] IX, 264 Seiten Illustrationen 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter studies in mathematics Volume 97 Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Algebraische Codierung (DE-588)4141834-7 gnd rswk-swf Mindestabstand Dimension eines Ideals Duale lineare Formen Bewertungscode Minimum distance height of an ideal dual linear forms fat points evaluation code socle degree. Algebraische Codierung (DE-588)4141834-7 s Kommutative Algebra (DE-588)4164821-3 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 9783111214795 Erscheint auch als Online-Ausgabe, EPUB 9783111215389 De Gruyter studies in mathematics Volume 97 (DE-604)BV000005407 97 X:MVB https://www.degruyter.com/isbn/9783111212920 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035115071&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20240120 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Tohǎneanu, Ştefan Ovidiu I. Commutative algebra methods for coding theory De Gruyter studies in mathematics Kommutative Algebra (DE-588)4164821-3 gnd Algebraische Codierung (DE-588)4141834-7 gnd |
subject_GND | (DE-588)4164821-3 (DE-588)4141834-7 |
title | Commutative algebra methods for coding theory |
title_auth | Commutative algebra methods for coding theory |
title_exact_search | Commutative algebra methods for coding theory |
title_full | Commutative algebra methods for coding theory Ştefan Ovidiu I. Tohǎneanu |
title_fullStr | Commutative algebra methods for coding theory Ştefan Ovidiu I. Tohǎneanu |
title_full_unstemmed | Commutative algebra methods for coding theory Ştefan Ovidiu I. Tohǎneanu |
title_short | Commutative algebra methods for coding theory |
title_sort | commutative algebra methods for coding theory |
topic | Kommutative Algebra (DE-588)4164821-3 gnd Algebraische Codierung (DE-588)4141834-7 gnd |
topic_facet | Kommutative Algebra Algebraische Codierung |
url | https://www.degruyter.com/isbn/9783111212920 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035115071&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005407 |
work_keys_str_mv | AT tohaneanustefanovidiui commutativealgebramethodsforcodingtheory AT walterdegruytergmbhcokg commutativealgebramethodsforcodingtheory |