Proceedings of the 2024 SIAM International Conference on Data Mining (SDM):
Data mining is an important tool in science, engineering, industrial processes, healthcare, business, and medicine. The datasets in these fields are large, complex, and often noisy. Extracting knowledge requires the use of sophisticated, high performance and principled analysis techniques and algori...
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, [Pennsylvania]
Society for Industrial and Applied Mathematics, SIAM
[2024]
|
Schlagworte: | |
Online-Zugang: | DE-29 Volltext |
Zusammenfassung: | Data mining is an important tool in science, engineering, industrial processes, healthcare, business, and medicine. The datasets in these fields are large, complex, and often noisy. Extracting knowledge requires the use of sophisticated, high performance and principled analysis techniques and algorithms, based on sound theoretical and statistical foundations. These techniques in turn require implementations that are carefully tuned for performance; powerful visualization technologies; interface systems that are usable by scientists, engineers, and physicians as well as researchers; and infrastructures that support them. This conference provides a venue for researchers who are addressing these problems to present their work in a peer-reviewed forum. It also provides an ideal setting for graduate students and others new to the field to learn about cutting-edge research by hearing outstanding invited speakers and attending presentations and tutorials (included with conference registration). A set of focused workshops are also held on the last day of the conference. The proceedings of the conference are published in archival form, and are also made available on the SIAM web site. |
Beschreibung: | 1 Online-Ressource (xii, 904 Seiten) |
ISBN: | 9781611978032 |
DOI: | 10.1137/1.9781611978032 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049674570 | ||
003 | DE-604 | ||
005 | 20240829 | ||
006 | a |||| 10||| | ||
007 | cr|uuu---uuuuu | ||
008 | 240503s2024 |||| o||u| ||||||eng d | ||
020 | |a 9781611978032 |c online |9 978-1-61197-803-2 | ||
035 | |a (OCoLC)1437878496 | ||
035 | |a (DE-599)BVBBV049674570 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-83 | ||
111 | 2 | |a SIAM International Conference on Data Mining |d 2024 |c Houston, [Texas] |4 isb | |
245 | 1 | 0 | |a Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) |c editor(s): Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, and Matteo Riondato |
246 | 1 | 3 | |a SDM'24 |
246 | 1 | 3 | |a SDM 2024 |
264 | 1 | |a Philadelphia, [Pennsylvania] |b Society for Industrial and Applied Mathematics, SIAM |c [2024] | |
264 | 4 | |c © 2024 | |
300 | |a 1 Online-Ressource (xii, 904 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Data mining is an important tool in science, engineering, industrial processes, healthcare, business, and medicine. The datasets in these fields are large, complex, and often noisy. Extracting knowledge requires the use of sophisticated, high performance and principled analysis techniques and algorithms, based on sound theoretical and statistical foundations. These techniques in turn require implementations that are carefully tuned for performance; powerful visualization technologies; interface systems that are usable by scientists, engineers, and physicians as well as researchers; and infrastructures that support them. This conference provides a venue for researchers who are addressing these problems to present their work in a peer-reviewed forum. It also provides an ideal setting for graduate students and others new to the field to learn about cutting-edge research by hearing outstanding invited speakers and attending presentations and tutorials (included with conference registration). A set of focused workshops are also held on the last day of the conference. The proceedings of the conference are published in archival form, and are also made available on the SIAM web site. | ||
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
700 | 1 | |a Shekhar, Shashi |d 1963- |0 (DE-588)170860566 |4 edt | |
700 | 1 | |a Papalexakis, Vagelis |4 edt | |
700 | 1 | |a Gao, Jing |4 edt | |
700 | 1 | |a Jiang, Zhe |4 edt | |
700 | 1 | |a Riondato, Matteo |0 (DE-588)1257161466 |4 edt | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611978032 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-72-SIA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035017512 | |
966 | e | |u https://doi.org/10.1137/1.9781611978032 |l DE-29 |p ZDB-72-SIA |q UER_Paketkauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1808768874148003840 |
---|---|
adam_text | |
any_adam_object | |
author2 | Shekhar, Shashi 1963- Papalexakis, Vagelis Gao, Jing Jiang, Zhe Riondato, Matteo |
author2_role | edt edt edt edt edt |
author2_variant | s s ss v p vp j g jg z j zj m r mr |
author_GND | (DE-588)170860566 (DE-588)1257161466 |
author_facet | Shekhar, Shashi 1963- Papalexakis, Vagelis Gao, Jing Jiang, Zhe Riondato, Matteo |
building | Verbundindex |
bvnumber | BV049674570 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)1437878496 (DE-599)BVBBV049674570 |
doi_str_mv | 10.1137/1.9781611978032 |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV049674570</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240829</controlfield><controlfield tag="006">a |||| 10|||</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240503s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611978032</subfield><subfield code="c">online</subfield><subfield code="9">978-1-61197-803-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1437878496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049674570</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">SIAM International Conference on Data Mining</subfield><subfield code="d">2024</subfield><subfield code="c">Houston, [Texas]</subfield><subfield code="4">isb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proceedings of the 2024 SIAM International Conference on Data Mining (SDM)</subfield><subfield code="c">editor(s): Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, and Matteo Riondato</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">SDM'24</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">SDM 2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, [Pennsylvania]</subfield><subfield code="b">Society for Industrial and Applied Mathematics, SIAM</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 904 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data mining is an important tool in science, engineering, industrial processes, healthcare, business, and medicine. The datasets in these fields are large, complex, and often noisy. Extracting knowledge requires the use of sophisticated, high performance and principled analysis techniques and algorithms, based on sound theoretical and statistical foundations. These techniques in turn require implementations that are carefully tuned for performance; powerful visualization technologies; interface systems that are usable by scientists, engineers, and physicians as well as researchers; and infrastructures that support them. This conference provides a venue for researchers who are addressing these problems to present their work in a peer-reviewed forum. It also provides an ideal setting for graduate students and others new to the field to learn about cutting-edge research by hearing outstanding invited speakers and attending presentations and tutorials (included with conference registration). A set of focused workshops are also held on the last day of the conference. The proceedings of the conference are published in archival form, and are also made available on the SIAM web site.</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shekhar, Shashi</subfield><subfield code="d">1963-</subfield><subfield code="0">(DE-588)170860566</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papalexakis, Vagelis</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jing</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Zhe</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riondato, Matteo</subfield><subfield code="0">(DE-588)1257161466</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611978032</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035017512</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611978032</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="q">UER_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV049674570 |
illustrated | Not Illustrated |
indexdate | 2024-08-30T00:06:59Z |
institution | BVB |
isbn | 9781611978032 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035017512 |
oclc_num | 1437878496 |
open_access_boolean | |
owner | DE-29 DE-83 |
owner_facet | DE-29 DE-83 |
physical | 1 Online-Ressource (xii, 904 Seiten) |
psigel | ZDB-72-SIA ZDB-72-SIA UER_Paketkauf_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Society for Industrial and Applied Mathematics, SIAM |
record_format | marc |
spelling | SIAM International Conference on Data Mining 2024 Houston, [Texas] isb Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) editor(s): Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, and Matteo Riondato SDM'24 SDM 2024 Philadelphia, [Pennsylvania] Society for Industrial and Applied Mathematics, SIAM [2024] © 2024 1 Online-Ressource (xii, 904 Seiten) txt rdacontent c rdamedia cr rdacarrier Data mining is an important tool in science, engineering, industrial processes, healthcare, business, and medicine. The datasets in these fields are large, complex, and often noisy. Extracting knowledge requires the use of sophisticated, high performance and principled analysis techniques and algorithms, based on sound theoretical and statistical foundations. These techniques in turn require implementations that are carefully tuned for performance; powerful visualization technologies; interface systems that are usable by scientists, engineers, and physicians as well as researchers; and infrastructures that support them. This conference provides a venue for researchers who are addressing these problems to present their work in a peer-reviewed forum. It also provides an ideal setting for graduate students and others new to the field to learn about cutting-edge research by hearing outstanding invited speakers and attending presentations and tutorials (included with conference registration). A set of focused workshops are also held on the last day of the conference. The proceedings of the conference are published in archival form, and are also made available on the SIAM web site. (DE-588)1071861417 Konferenzschrift gnd-content Shekhar, Shashi 1963- (DE-588)170860566 edt Papalexakis, Vagelis edt Gao, Jing edt Jiang, Zhe edt Riondato, Matteo (DE-588)1257161466 edt https://doi.org/10.1137/1.9781611978032 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) |
subject_GND | (DE-588)1071861417 |
title | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) |
title_alt | SDM'24 SDM 2024 |
title_auth | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) |
title_exact_search | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) |
title_full | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) editor(s): Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, and Matteo Riondato |
title_fullStr | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) editor(s): Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, and Matteo Riondato |
title_full_unstemmed | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) editor(s): Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, and Matteo Riondato |
title_short | Proceedings of the 2024 SIAM International Conference on Data Mining (SDM) |
title_sort | proceedings of the 2024 siam international conference on data mining sdm |
topic_facet | Konferenzschrift |
url | https://doi.org/10.1137/1.9781611978032 |
work_keys_str_mv | AT siaminternationalconferenceondatamininghoustontexas proceedingsofthe2024siaminternationalconferenceondataminingsdm AT shekharshashi proceedingsofthe2024siaminternationalconferenceondataminingsdm AT papalexakisvagelis proceedingsofthe2024siaminternationalconferenceondataminingsdm AT gaojing proceedingsofthe2024siaminternationalconferenceondataminingsdm AT jiangzhe proceedingsofthe2024siaminternationalconferenceondataminingsdm AT riondatomatteo proceedingsofthe2024siaminternationalconferenceondataminingsdm AT siaminternationalconferenceondatamininghoustontexas sdm24 AT shekharshashi sdm24 AT papalexakisvagelis sdm24 AT gaojing sdm24 AT jiangzhe sdm24 AT riondatomatteo sdm24 AT siaminternationalconferenceondatamininghoustontexas sdm2024 AT shekharshashi sdm2024 AT papalexakisvagelis sdm2024 AT gaojing sdm2024 AT jiangzhe sdm2024 AT riondatomatteo sdm2024 |