Machine Learning in Manufacturing: Quality 4.0 and the Zero Defects Vision
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
[2024]
|
Online-Zugang: | FHD01 |
Beschreibung: | 1 Online-Ressource (x, 236 Seiten) |
ISBN: | 9780323990301 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049644709 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240410s2024 |||| o||u| ||||||eng d | ||
020 | |a 9780323990301 |9 978-0-323-99030-1 | ||
035 | |a (DE-599)BVBBV049644709 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
100 | 1 | |a Escobar, Carlos A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning in Manufacturing |b Quality 4.0 and the Zero Defects Vision |c Carlos A. Escobar, Ruben Morales-Menendez |
264 | 1 | |a Amsterdam |b Elsevier |c [2024] | |
300 | |a 1 Online-Ressource (x, 236 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Front Cover -- Machine Learning in Manufacturing -- Machine Learning in Manufacturing -- Copyright -- Contents -- Biographies -- Preface -- 1 -- Introduction -- 1.1 Motivation -- 1.2 Smart manufacturing -- 1.2.1 Technologies -- 1.2.2 Building blocks -- 1.2.3 Characteristics -- 1.2.4 Research areas -- 1.3 Evolution of modern quality control in manufacturing -- 1.4 Breakdown of traditional quality control methods -- 1.5 The rise of quality 4.0 -- 2 -- The technologies -- 2.1 Artificial intelligence -- 2.1.1 Machine learning -- 2.1.1.1 Desirable characteristics of ML projects | |
505 | 8 | |a 2.1.2 ChatGPT for quality 4.0 -- 2.2 Cloud storage and computing -- 2.2.1 Cloud framework for quality 4.0 -- 2.2.2 Data lake, data warehouse, and database -- 2.3 Industrial internet of things -- 2.3.1 The manufacturing things -- 2.3.1.1 Smart sensors -- 2.3.1.2 Actuators -- 2.3.2 Process monitoring and quality control in manufacturing -- 3 -- The data -- 3.1 Big data -- 3.2 Manufacturing big data -- 3.3 Transforming big data into a learning data -- 3.3.1 Data frame -- 3.3.2 Learning data sets -- 3.3.2.1 Recommendations on data splits -- 3.3.2.2 Type of data | |
505 | 8 | |a 3.4 Binary classification of quality data sets -- 3.4.1 Data annotation -- 3.4.2 BCoQ data sets examples -- 4 -- Classification -- 4.1 Binary Classification -- 4.2 Binary classification of quality -- 4.3 Classification errors -- 4.3.1 Alpha and beta errors -- 4.3.2 Metrics of classification performance -- 4.4 Empirical case study on classification metrics -- 4.5 Binary patterns -- 4.5.1 Discriminative information -- 4.5.1.1 Virtual case study one-3D pattern -- 4.5.1.2 Virtual case study two-separation -- 5 -- Machine learning theory -- 5.1 Overfitting and underfitting -- 5.2 Learning curves | |
505 | 8 | |a 5.3 Curse of dimensionality -- 5.4 Early stopping -- 5.5 Loss function for binary classification -- 5.6 Summary -- 6 -- Feature engineering -- 6.1 Feature creation -- 6.2 Feature selection -- 6.3 Feature visualization -- 6.4 Feature preprocessing -- 6.4.1 Feature imputation -- 6.4.2 Feature permutation -- 6.4.3 Outlier analysis -- 6.4.4 Feature transformation -- 6.5 Summary -- 7 -- Classifier development -- 7.1 Modeling paradigms -- 7.1.1 Statistical modeling versus machine-learning modeling -- 7.1.2 Observational data versus experimental data -- 7.1.3 Data snooping | |
505 | 8 | |a 7.1.4 Accuracy versus interpretability -- 7.1.5 Model selection -- 7.2 Machine-learning algorithms -- 7.2.1 Hyperparameter optimization -- 7.2.2 Artificial neural networks -- 7.2.2.1 Fully connected networks -- 7.2.2.2 Convolutional neural networks -- 7.2.3 Regularization for artificial neural networks -- 7.2.3.1 Dropout -- 7.2.3.2 L1 regularization -- 7.2.3.3 L2 regularization -- 7.2.4 Logistic regression -- 7.2.5 Tree models -- 7.2.5.1 Random forest -- 7.2.6 XGBoost -- 7.2.7 Classification threshold definition -- 7.2.7.1 ROC curve for finding the optimal threshold -- 7.3 Classifier fusion | |
700 | 1 | |a Morales-Menendez, Ruben |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-323-99029-5 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034988268 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=31214573 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186557836427264 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Escobar, Carlos A. Morales-Menendez, Ruben |
author_facet | Escobar, Carlos A. Morales-Menendez, Ruben |
author_role | aut aut |
author_sort | Escobar, Carlos A. |
author_variant | c a e ca cae r m m rmm |
building | Verbundindex |
bvnumber | BV049644709 |
collection | ZDB-30-PQE |
contents | Front Cover -- Machine Learning in Manufacturing -- Machine Learning in Manufacturing -- Copyright -- Contents -- Biographies -- Preface -- 1 -- Introduction -- 1.1 Motivation -- 1.2 Smart manufacturing -- 1.2.1 Technologies -- 1.2.2 Building blocks -- 1.2.3 Characteristics -- 1.2.4 Research areas -- 1.3 Evolution of modern quality control in manufacturing -- 1.4 Breakdown of traditional quality control methods -- 1.5 The rise of quality 4.0 -- 2 -- The technologies -- 2.1 Artificial intelligence -- 2.1.1 Machine learning -- 2.1.1.1 Desirable characteristics of ML projects 2.1.2 ChatGPT for quality 4.0 -- 2.2 Cloud storage and computing -- 2.2.1 Cloud framework for quality 4.0 -- 2.2.2 Data lake, data warehouse, and database -- 2.3 Industrial internet of things -- 2.3.1 The manufacturing things -- 2.3.1.1 Smart sensors -- 2.3.1.2 Actuators -- 2.3.2 Process monitoring and quality control in manufacturing -- 3 -- The data -- 3.1 Big data -- 3.2 Manufacturing big data -- 3.3 Transforming big data into a learning data -- 3.3.1 Data frame -- 3.3.2 Learning data sets -- 3.3.2.1 Recommendations on data splits -- 3.3.2.2 Type of data 3.4 Binary classification of quality data sets -- 3.4.1 Data annotation -- 3.4.2 BCoQ data sets examples -- 4 -- Classification -- 4.1 Binary Classification -- 4.2 Binary classification of quality -- 4.3 Classification errors -- 4.3.1 Alpha and beta errors -- 4.3.2 Metrics of classification performance -- 4.4 Empirical case study on classification metrics -- 4.5 Binary patterns -- 4.5.1 Discriminative information -- 4.5.1.1 Virtual case study one-3D pattern -- 4.5.1.2 Virtual case study two-separation -- 5 -- Machine learning theory -- 5.1 Overfitting and underfitting -- 5.2 Learning curves 5.3 Curse of dimensionality -- 5.4 Early stopping -- 5.5 Loss function for binary classification -- 5.6 Summary -- 6 -- Feature engineering -- 6.1 Feature creation -- 6.2 Feature selection -- 6.3 Feature visualization -- 6.4 Feature preprocessing -- 6.4.1 Feature imputation -- 6.4.2 Feature permutation -- 6.4.3 Outlier analysis -- 6.4.4 Feature transformation -- 6.5 Summary -- 7 -- Classifier development -- 7.1 Modeling paradigms -- 7.1.1 Statistical modeling versus machine-learning modeling -- 7.1.2 Observational data versus experimental data -- 7.1.3 Data snooping 7.1.4 Accuracy versus interpretability -- 7.1.5 Model selection -- 7.2 Machine-learning algorithms -- 7.2.1 Hyperparameter optimization -- 7.2.2 Artificial neural networks -- 7.2.2.1 Fully connected networks -- 7.2.2.2 Convolutional neural networks -- 7.2.3 Regularization for artificial neural networks -- 7.2.3.1 Dropout -- 7.2.3.2 L1 regularization -- 7.2.3.3 L2 regularization -- 7.2.4 Logistic regression -- 7.2.5 Tree models -- 7.2.5.1 Random forest -- 7.2.6 XGBoost -- 7.2.7 Classification threshold definition -- 7.2.7.1 ROC curve for finding the optimal threshold -- 7.3 Classifier fusion |
ctrlnum | (DE-599)BVBBV049644709 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04066nmm a2200349 c 4500</leader><controlfield tag="001">BV049644709</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240410s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323990301</subfield><subfield code="9">978-0-323-99030-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049644709</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Escobar, Carlos A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning in Manufacturing</subfield><subfield code="b">Quality 4.0 and the Zero Defects Vision</subfield><subfield code="c">Carlos A. Escobar, Ruben Morales-Menendez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 236 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Machine Learning in Manufacturing -- Machine Learning in Manufacturing -- Copyright -- Contents -- Biographies -- Preface -- 1 -- Introduction -- 1.1 Motivation -- 1.2 Smart manufacturing -- 1.2.1 Technologies -- 1.2.2 Building blocks -- 1.2.3 Characteristics -- 1.2.4 Research areas -- 1.3 Evolution of modern quality control in manufacturing -- 1.4 Breakdown of traditional quality control methods -- 1.5 The rise of quality 4.0 -- 2 -- The technologies -- 2.1 Artificial intelligence -- 2.1.1 Machine learning -- 2.1.1.1 Desirable characteristics of ML projects</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.2 ChatGPT for quality 4.0 -- 2.2 Cloud storage and computing -- 2.2.1 Cloud framework for quality 4.0 -- 2.2.2 Data lake, data warehouse, and database -- 2.3 Industrial internet of things -- 2.3.1 The manufacturing things -- 2.3.1.1 Smart sensors -- 2.3.1.2 Actuators -- 2.3.2 Process monitoring and quality control in manufacturing -- 3 -- The data -- 3.1 Big data -- 3.2 Manufacturing big data -- 3.3 Transforming big data into a learning data -- 3.3.1 Data frame -- 3.3.2 Learning data sets -- 3.3.2.1 Recommendations on data splits -- 3.3.2.2 Type of data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 Binary classification of quality data sets -- 3.4.1 Data annotation -- 3.4.2 BCoQ data sets examples -- 4 -- Classification -- 4.1 Binary Classification -- 4.2 Binary classification of quality -- 4.3 Classification errors -- 4.3.1 Alpha and beta errors -- 4.3.2 Metrics of classification performance -- 4.4 Empirical case study on classification metrics -- 4.5 Binary patterns -- 4.5.1 Discriminative information -- 4.5.1.1 Virtual case study one-3D pattern -- 4.5.1.2 Virtual case study two-separation -- 5 -- Machine learning theory -- 5.1 Overfitting and underfitting -- 5.2 Learning curves</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 Curse of dimensionality -- 5.4 Early stopping -- 5.5 Loss function for binary classification -- 5.6 Summary -- 6 -- Feature engineering -- 6.1 Feature creation -- 6.2 Feature selection -- 6.3 Feature visualization -- 6.4 Feature preprocessing -- 6.4.1 Feature imputation -- 6.4.2 Feature permutation -- 6.4.3 Outlier analysis -- 6.4.4 Feature transformation -- 6.5 Summary -- 7 -- Classifier development -- 7.1 Modeling paradigms -- 7.1.1 Statistical modeling versus machine-learning modeling -- 7.1.2 Observational data versus experimental data -- 7.1.3 Data snooping</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.1.4 Accuracy versus interpretability -- 7.1.5 Model selection -- 7.2 Machine-learning algorithms -- 7.2.1 Hyperparameter optimization -- 7.2.2 Artificial neural networks -- 7.2.2.1 Fully connected networks -- 7.2.2.2 Convolutional neural networks -- 7.2.3 Regularization for artificial neural networks -- 7.2.3.1 Dropout -- 7.2.3.2 L1 regularization -- 7.2.3.3 L2 regularization -- 7.2.4 Logistic regression -- 7.2.5 Tree models -- 7.2.5.1 Random forest -- 7.2.6 XGBoost -- 7.2.7 Classification threshold definition -- 7.2.7.1 ROC curve for finding the optimal threshold -- 7.3 Classifier fusion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morales-Menendez, Ruben</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-323-99029-5</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034988268</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=31214573</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049644709 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:39:43Z |
indexdate | 2024-07-10T10:13:02Z |
institution | BVB |
isbn | 9780323990301 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034988268 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (x, 236 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Elsevier |
record_format | marc |
spelling | Escobar, Carlos A. Verfasser aut Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision Carlos A. Escobar, Ruben Morales-Menendez Amsterdam Elsevier [2024] 1 Online-Ressource (x, 236 Seiten) txt rdacontent c rdamedia cr rdacarrier Front Cover -- Machine Learning in Manufacturing -- Machine Learning in Manufacturing -- Copyright -- Contents -- Biographies -- Preface -- 1 -- Introduction -- 1.1 Motivation -- 1.2 Smart manufacturing -- 1.2.1 Technologies -- 1.2.2 Building blocks -- 1.2.3 Characteristics -- 1.2.4 Research areas -- 1.3 Evolution of modern quality control in manufacturing -- 1.4 Breakdown of traditional quality control methods -- 1.5 The rise of quality 4.0 -- 2 -- The technologies -- 2.1 Artificial intelligence -- 2.1.1 Machine learning -- 2.1.1.1 Desirable characteristics of ML projects 2.1.2 ChatGPT for quality 4.0 -- 2.2 Cloud storage and computing -- 2.2.1 Cloud framework for quality 4.0 -- 2.2.2 Data lake, data warehouse, and database -- 2.3 Industrial internet of things -- 2.3.1 The manufacturing things -- 2.3.1.1 Smart sensors -- 2.3.1.2 Actuators -- 2.3.2 Process monitoring and quality control in manufacturing -- 3 -- The data -- 3.1 Big data -- 3.2 Manufacturing big data -- 3.3 Transforming big data into a learning data -- 3.3.1 Data frame -- 3.3.2 Learning data sets -- 3.3.2.1 Recommendations on data splits -- 3.3.2.2 Type of data 3.4 Binary classification of quality data sets -- 3.4.1 Data annotation -- 3.4.2 BCoQ data sets examples -- 4 -- Classification -- 4.1 Binary Classification -- 4.2 Binary classification of quality -- 4.3 Classification errors -- 4.3.1 Alpha and beta errors -- 4.3.2 Metrics of classification performance -- 4.4 Empirical case study on classification metrics -- 4.5 Binary patterns -- 4.5.1 Discriminative information -- 4.5.1.1 Virtual case study one-3D pattern -- 4.5.1.2 Virtual case study two-separation -- 5 -- Machine learning theory -- 5.1 Overfitting and underfitting -- 5.2 Learning curves 5.3 Curse of dimensionality -- 5.4 Early stopping -- 5.5 Loss function for binary classification -- 5.6 Summary -- 6 -- Feature engineering -- 6.1 Feature creation -- 6.2 Feature selection -- 6.3 Feature visualization -- 6.4 Feature preprocessing -- 6.4.1 Feature imputation -- 6.4.2 Feature permutation -- 6.4.3 Outlier analysis -- 6.4.4 Feature transformation -- 6.5 Summary -- 7 -- Classifier development -- 7.1 Modeling paradigms -- 7.1.1 Statistical modeling versus machine-learning modeling -- 7.1.2 Observational data versus experimental data -- 7.1.3 Data snooping 7.1.4 Accuracy versus interpretability -- 7.1.5 Model selection -- 7.2 Machine-learning algorithms -- 7.2.1 Hyperparameter optimization -- 7.2.2 Artificial neural networks -- 7.2.2.1 Fully connected networks -- 7.2.2.2 Convolutional neural networks -- 7.2.3 Regularization for artificial neural networks -- 7.2.3.1 Dropout -- 7.2.3.2 L1 regularization -- 7.2.3.3 L2 regularization -- 7.2.4 Logistic regression -- 7.2.5 Tree models -- 7.2.5.1 Random forest -- 7.2.6 XGBoost -- 7.2.7 Classification threshold definition -- 7.2.7.1 ROC curve for finding the optimal threshold -- 7.3 Classifier fusion Morales-Menendez, Ruben Verfasser aut Erscheint auch als Druck-Ausgabe 978-0-323-99029-5 |
spellingShingle | Escobar, Carlos A. Morales-Menendez, Ruben Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision Front Cover -- Machine Learning in Manufacturing -- Machine Learning in Manufacturing -- Copyright -- Contents -- Biographies -- Preface -- 1 -- Introduction -- 1.1 Motivation -- 1.2 Smart manufacturing -- 1.2.1 Technologies -- 1.2.2 Building blocks -- 1.2.3 Characteristics -- 1.2.4 Research areas -- 1.3 Evolution of modern quality control in manufacturing -- 1.4 Breakdown of traditional quality control methods -- 1.5 The rise of quality 4.0 -- 2 -- The technologies -- 2.1 Artificial intelligence -- 2.1.1 Machine learning -- 2.1.1.1 Desirable characteristics of ML projects 2.1.2 ChatGPT for quality 4.0 -- 2.2 Cloud storage and computing -- 2.2.1 Cloud framework for quality 4.0 -- 2.2.2 Data lake, data warehouse, and database -- 2.3 Industrial internet of things -- 2.3.1 The manufacturing things -- 2.3.1.1 Smart sensors -- 2.3.1.2 Actuators -- 2.3.2 Process monitoring and quality control in manufacturing -- 3 -- The data -- 3.1 Big data -- 3.2 Manufacturing big data -- 3.3 Transforming big data into a learning data -- 3.3.1 Data frame -- 3.3.2 Learning data sets -- 3.3.2.1 Recommendations on data splits -- 3.3.2.2 Type of data 3.4 Binary classification of quality data sets -- 3.4.1 Data annotation -- 3.4.2 BCoQ data sets examples -- 4 -- Classification -- 4.1 Binary Classification -- 4.2 Binary classification of quality -- 4.3 Classification errors -- 4.3.1 Alpha and beta errors -- 4.3.2 Metrics of classification performance -- 4.4 Empirical case study on classification metrics -- 4.5 Binary patterns -- 4.5.1 Discriminative information -- 4.5.1.1 Virtual case study one-3D pattern -- 4.5.1.2 Virtual case study two-separation -- 5 -- Machine learning theory -- 5.1 Overfitting and underfitting -- 5.2 Learning curves 5.3 Curse of dimensionality -- 5.4 Early stopping -- 5.5 Loss function for binary classification -- 5.6 Summary -- 6 -- Feature engineering -- 6.1 Feature creation -- 6.2 Feature selection -- 6.3 Feature visualization -- 6.4 Feature preprocessing -- 6.4.1 Feature imputation -- 6.4.2 Feature permutation -- 6.4.3 Outlier analysis -- 6.4.4 Feature transformation -- 6.5 Summary -- 7 -- Classifier development -- 7.1 Modeling paradigms -- 7.1.1 Statistical modeling versus machine-learning modeling -- 7.1.2 Observational data versus experimental data -- 7.1.3 Data snooping 7.1.4 Accuracy versus interpretability -- 7.1.5 Model selection -- 7.2 Machine-learning algorithms -- 7.2.1 Hyperparameter optimization -- 7.2.2 Artificial neural networks -- 7.2.2.1 Fully connected networks -- 7.2.2.2 Convolutional neural networks -- 7.2.3 Regularization for artificial neural networks -- 7.2.3.1 Dropout -- 7.2.3.2 L1 regularization -- 7.2.3.3 L2 regularization -- 7.2.4 Logistic regression -- 7.2.5 Tree models -- 7.2.5.1 Random forest -- 7.2.6 XGBoost -- 7.2.7 Classification threshold definition -- 7.2.7.1 ROC curve for finding the optimal threshold -- 7.3 Classifier fusion |
title | Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision |
title_auth | Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision |
title_exact_search | Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision |
title_exact_search_txtP | Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision |
title_full | Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision Carlos A. Escobar, Ruben Morales-Menendez |
title_fullStr | Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision Carlos A. Escobar, Ruben Morales-Menendez |
title_full_unstemmed | Machine Learning in Manufacturing Quality 4.0 and the Zero Defects Vision Carlos A. Escobar, Ruben Morales-Menendez |
title_short | Machine Learning in Manufacturing |
title_sort | machine learning in manufacturing quality 4 0 and the zero defects vision |
title_sub | Quality 4.0 and the Zero Defects Vision |
work_keys_str_mv | AT escobarcarlosa machinelearninginmanufacturingquality40andthezerodefectsvision AT moralesmenendezruben machinelearninginmanufacturingquality40andthezerodefectsvision |