Category theory: invariances and symmetries in computer science
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
|
Schlagworte: | |
Online-Zugang: | https://www.degruyter.com/isbn/9783111080567 Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XXXI, 404 Seiten Diagramme 25 cm, 859 g |
ISBN: | 9783111080567 3111080560 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049634846 | ||
003 | DE-604 | ||
005 | 20240711 | ||
007 | t | ||
008 | 240404s2023 gw |||| |||| 00||| eng d | ||
015 | |a 23,N03 |2 dnb | ||
015 | |a 24,A09 |2 dnb | ||
016 | 7 | |a 1277762252 |2 DE-101 | |
020 | |a 9783111080567 |c Festeinband : EUR 149.95 (DE) (freier Preis), EUR 149.95 (AT) (freier Preis) |9 978-3-11-108056-7 | ||
020 | |a 3111080560 |9 3-11-108056-0 | ||
024 | 3 | |a 9783111080567 | |
035 | |a (OCoLC)1361708771 | ||
035 | |a (DE-599)DNB1277762252 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-20 | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |8 1\p |a 004 |2 23sdnb | ||
100 | 1 | |a Majkić, Zoran |d 19XX- |e Verfasser |0 (DE-588)1289840679 |4 aut | |
245 | 1 | 0 | |a Category theory |b invariances and symmetries in computer science |c Zoran Majkić |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
300 | |a XXXI, 404 Seiten |b Diagramme |c 25 cm, 859 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
653 | |a Kategorientheorie | ||
653 | |a Natürliches Schließen | ||
653 | |a Lambda-Kalkül | ||
653 | |a Category Theory | ||
653 | |a Natural Deduction | ||
653 | |a Lambda Calculus | ||
653 | |a Data Integration Theory | ||
653 | |a Category Theory; Natural Deduction; Lambda Calculus; Data Integration Theory | ||
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-108167-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-108201-1 |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/isbn/9783111080567 |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1277762252/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034978584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 2 | |8 1\p |a dnb |d 20240219 |q DE-101 |u https://d-nb.info/provenance/plan#dnb |
Datensatz im Suchindex
_version_ | 1805084829056761856 |
---|---|
adam_text |
CONTENTS
PREFACE
-
VII
DEPENDENCIES
BETWEEN
THE
CHAPTERS
-
XVII
DETAILED
PLAN
-
XIX
ACKNOWLEDGMENTS
AND
SHORT
HISTORY
OF
THIS
BOOK
-
XXV
NOTATION
CONVENTIONS
-
XXVII
1
1.1
1.2
1.3
1.4
BASIC
TRANSFORMATIONS
OF
CATEGORIES:
HIERARCHY
OF
N-DIMENSIONAL
LEVELS
-
1
THE
N-DIMENSIONAL
LEVELS:
A
NONSET-BASED
DEFINITION
OF
NATURAL
NUMBERS
-
1
COMMA
LIFTING
FOR
N-DIMENSIONAL
LEVELS
-
6
INTRODUCTION
TO
COMMA-INDUCTION
IN
THE
N-DIMENSIONAL
HIERARCHY
-
16
COMMA-INDUCTION
OF
THE
ADJUNCTIONS
-
20
2
2.1
2.2
2.3
2.4
COMMA-PROPAGATION
TRANSFORMATIONS:
GLOBAL
CATEGORIAL
SYMMETRIES
-
29
INTRODUCTION
TO
GENERAL
COMMA-PROPAGATION
-
29
COMMA-PROPAGATION
OF
FUNCTORS
AND
NATURAL
TRANSFORMATIONS
-
34
COMMA-PROPAGATION
OF
(CO)LIMITS
-
40
EXAMPLE:
COMMA-PROPAGATION
AND
INFINITE
HIERARCHY
OF
SMALL-COMPLETE
CATEGORIES
-
50
2.5
AN
ANALOGY
BETWEEN
PHYSICAL
AND
ABSTRACT
CATEGORIAL
GLOBAL
SYMMETRIES:
ADJUNCTIONS-AS-FIELDS
-
57
2.5.1
ANALOGY
BETWEEN
ADJUNCTIONS
AND
METRIC
TENSOR
FIELD
WITH
EINSTEIN-HILBERT
ACTION
-
60
2.5.2
COMMA-PROPAGATION
TRANSFORMATION
SYMMETRIES
-
65
3
ARROWS-TO-OBJECTS
CONCEPTUAL
TRANSFORMATION:
INTERNAL
CATEGORIAL
SYMMETRY
-
71
3.1
INTRODUCTION
TO
CATEGORIAL
INTERNAL
SYMMETRY
OF
PRIMITIVE
CATEGORIAL
CONCEPTS
-
71
3.2
3.3
3.4
3.5
INTERNAL
SYMMETRY
AND
METACATEGORY
-
77
CONCEPTUALLY
CLOSED
CATEGORIES:
A
TOPOLOGY
-
83
SYMMETRY-EXTENDED
CATEGORIES
-
94
SYMMETRY
HIERARCHY
UPPER
BOUND:
IMPLODED
CATEGORIES
-
101
4
4.1
4.1.1
INTERNAL
SYMMETRY
AND
LOGICAL
DEDUCTION
-
111
NATURAL
DEDUCTION
SYSTEM
-
111
FIRST
SOLUTION
FOR
TAGGING
TECHNIQUES
OF
NATURAL
DEDUCTION
-
111
XXX
-
CONTENTS
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3
SEQUENT-BASED
SOLUTION
FOR
TAGGING
TECHNIQUES
-
116
DEFINITION
OF
SYMMETRY-EXTENDED
CATEGORY
ND
FOR
NATURAL
DEDUCTION
-
119
THE
PROPERTIES
OF
THE
COVARIANT
IMPLICATION
FUNCTOR
-
125
LOCAL
CARTESIAN
CLOSED
ADJUNCTION
(PCCC)
-
128
THE
N-DIMENSIONAL
LEVELS
OF
NATURAL
DEDUCTION
CATEGORIES
-
133
SYMMETRY-EXTENDED
CATEGORY
IC
FOR
PROPOSITIONAL
INTUITIONISTIC
CALCULUS
-
138
5
5.1
5.2
5.3
5.4
5.5
INTERNAL
SYMMETRY
AND
LAMBDA
CALCULUS
-
144
INTRODUCTION
TO
LAMBDA
CALCULUS
-
144
REFLEXIVE
OBJECTS
IN
THE
CARTESIAN
CLOSED
CATEGORIES
-
149
CONCEPTUALLY-CLOSED
CCC
AND
ITS
SUBCATEGORIES
OF
IDEMPOTENTS
-
156
INTERNAL
CATEGORIAL
SYMMETRY
AND
FIXED-POINT
OPERATORS
-
166
TOPOLOGICAL
K-THEORY,
IDEMPOTENT
COMPLETION
AND
INTERNAL
CATEGORIAL
SYMMETRY
-
169
6
INTERNAL
SYMMETRY
AND
THEORY
OF
PROCESSES:
STRONG
BISIMULATION
OF
COMPUTATION
TREES
-
173
6.1
6.2
6.3
6.4
6.5
6.6
6.6.1
INTRODUCTION
TO
TRANSITION
SYSTEMS
AND
THEIR
BISIMULATIONS
-
173
REGULAR
LANGUAGES,
AUTOMATA
AND
INTERNAL
CATEGORIAL
SYMMETRY
-
177
SYMMETRY-EXTENDED
CATEGORY
OF
FINITE
LABELED
TREES
-
183
INTERNAL
SYMMETRY
OF
THE
CATEGORY
OF
RELATIONS
-
191
TRANSITION
SYSTEMS
AS
FIXED
POINTS
IN
THE
N-DIMENSIONAL
LEVEL
REL
3
-
196
STRONG
BISIMULATIONS
AS
FIXED
POINTS
IN
THE
N-DIMENSIONAL
LEVEL
REL
3
-
201
MATHEMATICS
VIA
SYMMETRY:
REDUCTION
OF
MANY
VALUED
INTO
2-VALUED
LOGIC
-
207
6.6.2
MANY-VALUED
KNOWLEDGE
INVARIANCE
THROUGH
MODAL
LOGIC
TRANSFORMATIONS:
SEMANTIC
REFLECTION
-
212
7
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
INTERNAL
SYMMETRY
AND
DATA
INTEGRATION
THEORY
-
220
DB
(DATABASE)
CATEGORY
-
220
MORPHISM
PROPERTIES
OF
DB
CATEGORY
-
235
POWER-VIEW
ENDOFUNCTOR
AND
MONAD
T
-
249
DUALITY
-
254
OBJECTS
OF
DB:
BASIC
OPERATIONS
AND
EQUIVALENCE
RELATIONS
-
257
DATA
FEDERATION
OPERATOR
IN
DB
-
257
DATA
SEPARATION
OPERATOR
IN
DB
-
258
THE
(STRONG)
BEHAVIORAL
EQUIVALENCE
FOR
DATABASES
-
261
WEAK
OBSERVATIONAL
EQUIVALENCE
FOR
DATABASES
-
263
INTERNAL
CATEGORIAL
SYMMETRY
OF
DB
CATEGORY
-
266
(CO)PRODUCTS
-
270
(CO)LIMITS
AND
EXPONENTIATION
-
274
CONTENTS
-
XXXI
7.33
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.5
7.5.1
7.5.2
KLEISLI
SEMANTICS
FOR
DATABASE
MAPPINGS
-
282
PARTIAL
ORDERING
FOR
DATABASES
-
288
MATCHING
TENSOR
PRODUCT
-
292
MERGING
OPERATOR
-
295
UNIVERSAL
ALGEBRA
CONSIDERATIONS
-
298
ALGEBRAIC
DATABASE
LATTICE
-
302
ENRICHMENT
-
313
DB
IS
A
V-CATEGORY
ENRICHED
OVER
ITSELF
-
315
INTERNALIZED
YONEDA
EMBEDDING
-
320
A
A.1
A.1.1
A.1
.2
A.1.3
A.2
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.4
A.4.1
A.4.2
APPENDIX
-
323
INTRODUCTION
TO
LATTICES,
ALGEBRAS
AND
LOGICS
-
323
INTRODUCTION
TO
DEDUCTIVE
LOGIC
AND
BINARY
SEQUENT
CALCULUS
-
327
INTRODUCTION
TO
FIRST-ORDER
LOGIC
AND
TARSKI
'
S
INTERPRETATIONS
-
329
INTRODUCTION
TO
MULTIMODAL
LOGICS
AND
KRIPKE
SEMANTICS
-
333
BASIC
CATEGORY
THEORY
-
334
INTRODUCTION
TO
RDB,
DATABASE
MAPPINGS
AND
DB
CATEGORY
-
348
BASIC
DATABASE
CONCEPTS
-
351
DATABASE
OBSERVATIONS:
IDEMPOTENT
POWER-VIEW
OPERATOR
-
357
LOGIC
VERSUS
ALGEBRAS:
CATEGORIFICATION
BY
OPERADS
-
360
SKETCHES
AND
FUNCTORS
INTO
THE
DB
CATEGORY
-
363
SEMANTICS
OF
DB
SCHEMA
MAPPINGS:
INFORMATION
FLUXES
-
370
INTRODUCTION
TO
FIELD
THEORY
AND
SYMMETRIES
-
381
VECTOR
FIELDS
ON
CURVED
DIFFERENTIABLE
MANIFOLDS
-
388
TRANSFORMATION
OF
COORDINATES
-
392
BIBLIOGRAPHY
-
395
INDEX
-
403 |
adam_txt |
CONTENTS
PREFACE
-
VII
DEPENDENCIES
BETWEEN
THE
CHAPTERS
-
XVII
DETAILED
PLAN
-
XIX
ACKNOWLEDGMENTS
AND
SHORT
HISTORY
OF
THIS
BOOK
-
XXV
NOTATION
CONVENTIONS
-
XXVII
1
1.1
1.2
1.3
1.4
BASIC
TRANSFORMATIONS
OF
CATEGORIES:
HIERARCHY
OF
N-DIMENSIONAL
LEVELS
-
1
THE
N-DIMENSIONAL
LEVELS:
A
NONSET-BASED
DEFINITION
OF
NATURAL
NUMBERS
-
1
COMMA
LIFTING
FOR
N-DIMENSIONAL
LEVELS
-
6
INTRODUCTION
TO
COMMA-INDUCTION
IN
THE
N-DIMENSIONAL
HIERARCHY
-
16
COMMA-INDUCTION
OF
THE
ADJUNCTIONS
-
20
2
2.1
2.2
2.3
2.4
COMMA-PROPAGATION
TRANSFORMATIONS:
GLOBAL
CATEGORIAL
SYMMETRIES
-
29
INTRODUCTION
TO
GENERAL
COMMA-PROPAGATION
-
29
COMMA-PROPAGATION
OF
FUNCTORS
AND
NATURAL
TRANSFORMATIONS
-
34
COMMA-PROPAGATION
OF
(CO)LIMITS
-
40
EXAMPLE:
COMMA-PROPAGATION
AND
INFINITE
HIERARCHY
OF
SMALL-COMPLETE
CATEGORIES
-
50
2.5
AN
ANALOGY
BETWEEN
PHYSICAL
AND
ABSTRACT
CATEGORIAL
GLOBAL
SYMMETRIES:
ADJUNCTIONS-AS-FIELDS
-
57
2.5.1
ANALOGY
BETWEEN
ADJUNCTIONS
AND
METRIC
TENSOR
FIELD
WITH
EINSTEIN-HILBERT
ACTION
-
60
2.5.2
COMMA-PROPAGATION
TRANSFORMATION
SYMMETRIES
-
65
3
ARROWS-TO-OBJECTS
CONCEPTUAL
TRANSFORMATION:
INTERNAL
CATEGORIAL
SYMMETRY
-
71
3.1
INTRODUCTION
TO
CATEGORIAL
INTERNAL
SYMMETRY
OF
PRIMITIVE
CATEGORIAL
CONCEPTS
-
71
3.2
3.3
3.4
3.5
INTERNAL
SYMMETRY
AND
METACATEGORY
-
77
CONCEPTUALLY
CLOSED
CATEGORIES:
A
TOPOLOGY
-
83
SYMMETRY-EXTENDED
CATEGORIES
-
94
SYMMETRY
HIERARCHY
UPPER
BOUND:
IMPLODED
CATEGORIES
-
101
4
4.1
4.1.1
INTERNAL
SYMMETRY
AND
LOGICAL
DEDUCTION
-
111
NATURAL
DEDUCTION
SYSTEM
-
111
FIRST
SOLUTION
FOR
TAGGING
TECHNIQUES
OF
NATURAL
DEDUCTION
-
111
XXX
-
CONTENTS
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3
SEQUENT-BASED
SOLUTION
FOR
TAGGING
TECHNIQUES
-
116
DEFINITION
OF
SYMMETRY-EXTENDED
CATEGORY
ND
FOR
NATURAL
DEDUCTION
-
119
THE
PROPERTIES
OF
THE
COVARIANT
IMPLICATION
FUNCTOR
-
125
LOCAL
CARTESIAN
CLOSED
ADJUNCTION
(PCCC)
-
128
THE
N-DIMENSIONAL
LEVELS
OF
NATURAL
DEDUCTION
CATEGORIES
-
133
SYMMETRY-EXTENDED
CATEGORY
IC
FOR
PROPOSITIONAL
INTUITIONISTIC
CALCULUS
-
138
5
5.1
5.2
5.3
5.4
5.5
INTERNAL
SYMMETRY
AND
LAMBDA
CALCULUS
-
144
INTRODUCTION
TO
LAMBDA
CALCULUS
-
144
REFLEXIVE
OBJECTS
IN
THE
CARTESIAN
CLOSED
CATEGORIES
-
149
CONCEPTUALLY-CLOSED
CCC
AND
ITS
SUBCATEGORIES
OF
IDEMPOTENTS
-
156
INTERNAL
CATEGORIAL
SYMMETRY
AND
FIXED-POINT
OPERATORS
-
166
TOPOLOGICAL
K-THEORY,
IDEMPOTENT
COMPLETION
AND
INTERNAL
CATEGORIAL
SYMMETRY
-
169
6
INTERNAL
SYMMETRY
AND
THEORY
OF
PROCESSES:
STRONG
BISIMULATION
OF
COMPUTATION
TREES
-
173
6.1
6.2
6.3
6.4
6.5
6.6
6.6.1
INTRODUCTION
TO
TRANSITION
SYSTEMS
AND
THEIR
BISIMULATIONS
-
173
REGULAR
LANGUAGES,
AUTOMATA
AND
INTERNAL
CATEGORIAL
SYMMETRY
-
177
SYMMETRY-EXTENDED
CATEGORY
OF
FINITE
LABELED
TREES
-
183
INTERNAL
SYMMETRY
OF
THE
CATEGORY
OF
RELATIONS
-
191
TRANSITION
SYSTEMS
AS
FIXED
POINTS
IN
THE
N-DIMENSIONAL
LEVEL
REL
3
-
196
STRONG
BISIMULATIONS
AS
FIXED
POINTS
IN
THE
N-DIMENSIONAL
LEVEL
REL
3
-
201
MATHEMATICS
VIA
SYMMETRY:
REDUCTION
OF
MANY
VALUED
INTO
2-VALUED
LOGIC
-
207
6.6.2
MANY-VALUED
KNOWLEDGE
INVARIANCE
THROUGH
MODAL
LOGIC
TRANSFORMATIONS:
SEMANTIC
REFLECTION
-
212
7
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
INTERNAL
SYMMETRY
AND
DATA
INTEGRATION
THEORY
-
220
DB
(DATABASE)
CATEGORY
-
220
MORPHISM
PROPERTIES
OF
DB
CATEGORY
-
235
POWER-VIEW
ENDOFUNCTOR
AND
MONAD
T
-
249
DUALITY
-
254
OBJECTS
OF
DB:
BASIC
OPERATIONS
AND
EQUIVALENCE
RELATIONS
-
257
DATA
FEDERATION
OPERATOR
IN
DB
-
257
DATA
SEPARATION
OPERATOR
IN
DB
-
258
THE
(STRONG)
BEHAVIORAL
EQUIVALENCE
FOR
DATABASES
-
261
WEAK
OBSERVATIONAL
EQUIVALENCE
FOR
DATABASES
-
263
INTERNAL
CATEGORIAL
SYMMETRY
OF
DB
CATEGORY
-
266
(CO)PRODUCTS
-
270
(CO)LIMITS
AND
EXPONENTIATION
-
274
CONTENTS
-
XXXI
7.33
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.5
7.5.1
7.5.2
KLEISLI
SEMANTICS
FOR
DATABASE
MAPPINGS
-
282
PARTIAL
ORDERING
FOR
DATABASES
-
288
MATCHING
TENSOR
PRODUCT
-
292
MERGING
OPERATOR
-
295
UNIVERSAL
ALGEBRA
CONSIDERATIONS
-
298
ALGEBRAIC
DATABASE
LATTICE
-
302
ENRICHMENT
-
313
DB
IS
A
V-CATEGORY
ENRICHED
OVER
ITSELF
-
315
INTERNALIZED
YONEDA
EMBEDDING
-
320
A
A.1
A.1.1
A.1
.2
A.1.3
A.2
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.4
A.4.1
A.4.2
APPENDIX
-
323
INTRODUCTION
TO
LATTICES,
ALGEBRAS
AND
LOGICS
-
323
INTRODUCTION
TO
DEDUCTIVE
LOGIC
AND
BINARY
SEQUENT
CALCULUS
-
327
INTRODUCTION
TO
FIRST-ORDER
LOGIC
AND
TARSKI
'
S
INTERPRETATIONS
-
329
INTRODUCTION
TO
MULTIMODAL
LOGICS
AND
KRIPKE
SEMANTICS
-
333
BASIC
CATEGORY
THEORY
-
334
INTRODUCTION
TO
RDB,
DATABASE
MAPPINGS
AND
DB
CATEGORY
-
348
BASIC
DATABASE
CONCEPTS
-
351
DATABASE
OBSERVATIONS:
IDEMPOTENT
POWER-VIEW
OPERATOR
-
357
LOGIC
VERSUS
ALGEBRAS:
CATEGORIFICATION
BY
OPERADS
-
360
SKETCHES
AND
FUNCTORS
INTO
THE
DB
CATEGORY
-
363
SEMANTICS
OF
DB
SCHEMA
MAPPINGS:
INFORMATION
FLUXES
-
370
INTRODUCTION
TO
FIELD
THEORY
AND
SYMMETRIES
-
381
VECTOR
FIELDS
ON
CURVED
DIFFERENTIABLE
MANIFOLDS
-
388
TRANSFORMATION
OF
COORDINATES
-
392
BIBLIOGRAPHY
-
395
INDEX
-
403 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Majkić, Zoran 19XX- |
author_GND | (DE-588)1289840679 |
author_facet | Majkić, Zoran 19XX- |
author_role | aut |
author_sort | Majkić, Zoran 19XX- |
author_variant | z m zm |
building | Verbundindex |
bvnumber | BV049634846 |
classification_rvk | SK 320 SK 950 ST 270 |
ctrlnum | (OCoLC)1361708771 (DE-599)DNB1277762252 |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049634846</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240711</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240404s2023 gw |||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N03</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">24,A09</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1277762252</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111080567</subfield><subfield code="c">Festeinband : EUR 149.95 (DE) (freier Preis), EUR 149.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-108056-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3111080560</subfield><subfield code="9">3-11-108056-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783111080567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1361708771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1277762252</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majkić, Zoran</subfield><subfield code="d">19XX-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1289840679</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Category theory</subfield><subfield code="b">invariances and symmetries in computer science</subfield><subfield code="c">Zoran Majkić</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 404 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">25 cm, 859 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kategorientheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Natürliches Schließen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lambda-Kalkül</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Category Theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Natural Deduction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lambda Calculus</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Integration Theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Category Theory; Natural Deduction; Lambda Calculus; Data Integration Theory</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-108167-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-108201-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783111080567</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1277762252/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034978584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20240219</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield></record></collection> |
id | DE-604.BV049634846 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:38:51Z |
indexdate | 2024-07-20T08:10:40Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783111080567 3111080560 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034978584 |
oclc_num | 1361708771 |
open_access_boolean | |
owner | DE-703 DE-20 |
owner_facet | DE-703 DE-20 |
physical | XXXI, 404 Seiten Diagramme 25 cm, 859 g |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter |
record_format | marc |
spelling | Majkić, Zoran 19XX- Verfasser (DE-588)1289840679 aut Category theory invariances and symmetries in computer science Zoran Majkić Berlin ; Boston De Gruyter [2023] XXXI, 404 Seiten Diagramme 25 cm, 859 g txt rdacontent n rdamedia nc rdacarrier Kategorientheorie Natürliches Schließen Lambda-Kalkül Category Theory Natural Deduction Lambda Calculus Data Integration Theory Category Theory; Natural Deduction; Lambda Calculus; Data Integration Theory Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-108167-0 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-108201-1 X:MVB https://www.degruyter.com/isbn/9783111080567 B:DE-101 application/pdf https://d-nb.info/1277762252/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034978584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p dnb 20240219 DE-101 https://d-nb.info/provenance/plan#dnb |
spellingShingle | Majkić, Zoran 19XX- Category theory invariances and symmetries in computer science |
title | Category theory invariances and symmetries in computer science |
title_auth | Category theory invariances and symmetries in computer science |
title_exact_search | Category theory invariances and symmetries in computer science |
title_exact_search_txtP | Category theory invariances and symmetries in computer science |
title_full | Category theory invariances and symmetries in computer science Zoran Majkić |
title_fullStr | Category theory invariances and symmetries in computer science Zoran Majkić |
title_full_unstemmed | Category theory invariances and symmetries in computer science Zoran Majkić |
title_short | Category theory |
title_sort | category theory invariances and symmetries in computer science |
title_sub | invariances and symmetries in computer science |
url | https://www.degruyter.com/isbn/9783111080567 https://d-nb.info/1277762252/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034978584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT majkiczoran categorytheoryinvariancesandsymmetriesincomputerscience AT walterdegruytergmbhcokg categorytheoryinvariancesandsymmetriesincomputerscience |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis