Geometry of deep learning: a signal processing perspective
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
[2022]
|
Ausgabe: | 1st ed. 2022 |
Schriftenreihe: | Mathematics in industry
volume 37 |
Schlagworte: | |
Beschreibung: | Literaturverzeichnis Seite 317-325 |
Beschreibung: | xvi, 330 Seiten Illustrationen |
ISBN: | 9789811660481 |
ISSN: | 2198-3283 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV049607875 | ||
003 | DE-604 | ||
005 | 20240620 | ||
007 | t | ||
008 | 240312s2022 a||| |||| 00||| eng d | ||
020 | |a 9789811660481 |9 978-981-16-6048-1 | ||
035 | |a (OCoLC)1405904633 | ||
035 | |a (DE-599)BVBBV049607875 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-522 |a DE-573 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ye, Jong Chul |d ca. 21. Jh. |e Verfasser |0 (DE-588)1259447170 |4 aut | |
245 | 1 | 0 | |a Geometry of deep learning |b a signal processing perspective |c by Jong Chul Ye |
264 | 1 | |a Singapore |b Springer |c [2022] | |
300 | |a xvi, 330 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematics in industry |v volume 37 | |
500 | |a Literaturverzeichnis Seite 317-325 | ||
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Mathematical Models of Cognitive Processes and Neural Networks | |
650 | 4 | |a Mathematical and Computational Biology | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Biomathematics | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-16-6046-7 |
830 | 0 | |a Mathematics in industry |v volume 37 |w (DE-604)BV014253721 |9 37 |
Datensatz im Suchindex
_version_ | 1805078193345921024 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ye, Jong Chul ca. 21. Jh |
author_GND | (DE-588)1259447170 |
author_facet | Ye, Jong Chul ca. 21. Jh |
author_role | aut |
author_sort | Ye, Jong Chul ca. 21. Jh |
author_variant | j c y jc jcy |
building | Verbundindex |
bvnumber | BV049607875 |
classification_rvk | ST 300 |
classification_tum | MAT 000 |
ctrlnum | (OCoLC)1405904633 (DE-599)BVBBV049607875 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Mathematik |
edition | 1st ed. 2022 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV049607875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240620</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240312s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811660481</subfield><subfield code="9">978-981-16-6048-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1405904633</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049607875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-522</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ye, Jong Chul</subfield><subfield code="d">ca. 21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1259447170</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of deep learning</subfield><subfield code="b">a signal processing perspective</subfield><subfield code="c">by Jong Chul Ye</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 330 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in industry</subfield><subfield code="v">volume 37</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 317-325</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Models of Cognitive Processes and Neural Networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science) </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-16-6046-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in industry</subfield><subfield code="v">volume 37</subfield><subfield code="w">(DE-604)BV014253721</subfield><subfield code="9">37</subfield></datafield></record></collection> |
id | DE-604.BV049607875 |
illustrated | Illustrated |
index_date | 2024-07-03T23:35:46Z |
indexdate | 2024-07-20T06:25:12Z |
institution | BVB |
isbn | 9789811660481 |
issn | 2198-3283 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034952149 |
oclc_num | 1405904633 |
open_access_boolean | |
owner | DE-522 DE-573 |
owner_facet | DE-522 DE-573 |
physical | xvi, 330 Seiten Illustrationen |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series | Mathematics in industry |
series2 | Mathematics in industry |
spelling | Ye, Jong Chul ca. 21. Jh. Verfasser (DE-588)1259447170 aut Geometry of deep learning a signal processing perspective by Jong Chul Ye Singapore Springer [2022] xvi, 330 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Mathematics in industry volume 37 Literaturverzeichnis Seite 317-325 Differential Geometry Artificial Intelligence Mathematical Models of Cognitive Processes and Neural Networks Mathematical and Computational Biology Functional analysis Geometry, Differential Artificial intelligence Neural networks (Computer science) Biomathematics Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 s Künstliche Intelligenz (DE-588)4033447-8 s Deep learning (DE-588)1135597375 s DE-604 Erscheint auch als Online-Ausgabe 978-981-16-6046-7 Mathematics in industry volume 37 (DE-604)BV014253721 37 |
spellingShingle | Ye, Jong Chul ca. 21. Jh Geometry of deep learning a signal processing perspective Differential Geometry Artificial Intelligence Mathematical Models of Cognitive Processes and Neural Networks Mathematical and Computational Biology Functional analysis Geometry, Differential Artificial intelligence Neural networks (Computer science) Biomathematics Künstliche Intelligenz (DE-588)4033447-8 gnd Neuronales Netz (DE-588)4226127-2 gnd Deep learning (DE-588)1135597375 gnd Mathematics in industry |
subject_GND | (DE-588)4033447-8 (DE-588)4226127-2 (DE-588)1135597375 |
title | Geometry of deep learning a signal processing perspective |
title_auth | Geometry of deep learning a signal processing perspective |
title_exact_search | Geometry of deep learning a signal processing perspective |
title_exact_search_txtP | Geometry of Deep Learning A Signal Processing Perspective |
title_full | Geometry of deep learning a signal processing perspective by Jong Chul Ye |
title_fullStr | Geometry of deep learning a signal processing perspective by Jong Chul Ye |
title_full_unstemmed | Geometry of deep learning a signal processing perspective by Jong Chul Ye |
title_short | Geometry of deep learning |
title_sort | geometry of deep learning a signal processing perspective |
title_sub | a signal processing perspective |
topic | Differential Geometry Artificial Intelligence Mathematical Models of Cognitive Processes and Neural Networks Mathematical and Computational Biology Functional analysis Geometry, Differential Artificial intelligence Neural networks (Computer science) Biomathematics Künstliche Intelligenz (DE-588)4033447-8 gnd Neuronales Netz (DE-588)4226127-2 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Differential Geometry Artificial Intelligence Mathematical Models of Cognitive Processes and Neural Networks Mathematical and Computational Biology Functional analysis Geometry, Differential Artificial intelligence Neural networks (Computer science) Biomathematics Künstliche Intelligenz Neuronales Netz Deep learning |
volume_link | (DE-604)BV014253721 |
work_keys_str_mv | AT yejongchul geometryofdeeplearningasignalprocessingperspective |