Fundamentals and applications of colour engineering:
"The Wiley SID book series organizers and our editorial team believe that there is a strong need in the display field for a comprehensive book describing the manufacturing of the display panels used in today's display products. The objective of this book, entitled Flat Panel Display Manufa...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2024
|
Schriftenreihe: | Wiley SID series in display technology
|
Schlagworte: | |
Online-Zugang: | FHD01 |
Zusammenfassung: | "The Wiley SID book series organizers and our editorial team believe that there is a strong need in the display field for a comprehensive book describing the manufacturing of the display panels used in today's display products. The objective of this book, entitled Flat Panel Display Manufacturing, is to give a broad overview for the key manufacturing topics, serving as a reference text. The book will cover all aspects of the manufacturing processes of TFT LCD and AMOLED, which includes the fabrication processes of the TFT backplane, cell process, module packaging, and test processes. Additionally, the book introduces important topics in manufacturing science and engineering related to quality control, factory and supporting systems architectures, and green manufacturing. The book can serve as a reference book not only for display engineers in the field, but also for students in display fields. One might think that flat panel display manufacturing is a mature subject, but the state of the art manufacturing technologies enabling today's high end TFT LCDs and OLED displays are still evolving for the next generation displays. The editorial team invited authors from major display manufacturers and experts in each manufacturing topic (equipment, processing, etc.). Last but not least, we are also grateful to the Wiley SID book series team, and especially to Dr. Ian Sage for help planning, reviewing the early drafts, and bringing this book to light."-- |
Beschreibung: | 1 Online-Ressource (xxiv, 374 Seiten) |
ISBN: | 9781119827207 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049600113 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240306s2024 |||| o||u| ||||||eng d | ||
020 | |a 9781119827207 |9 978-1-119-82720-7 | ||
035 | |a (OCoLC)1427323854 | ||
035 | |a (DE-599)BVBBV049600113 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
245 | 1 | 0 | |a Fundamentals and applications of colour engineering |c edited by Phil Green |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2024 | |
300 | |a 1 Online-Ressource (xxiv, 374 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley SID series in display technology | |
505 | 8 | |a Intro -- Fundamentals and Applications of Colour Engineering -- Contents -- Series Editor's Foreword -- Preface -- Introductory Notes -- 1 Instruments and Methods for the Colour Measurements Required in Colour Engineering -- 1.1 Introduction -- 1.1.1 The Need for Colorimetry -- 1.1.2 The Principles of Colorimetry -- 1.1.3 Making the Transition from What We "See" to Quantifying How We "Match" a Colour -- 1.2 Visual Colorimetry -- 1.2.1 A Method to Uniquely Map the Colour of Lights and Objects -- 1.2.2 Development of the CIE Method of Visual Colorimetry -- 1.2.3 Applications of Visual Colorimetry -- 1.2.4 Disadvantages of Visual Colorimetry -- 1.3 Analogue Simulation of Visual Colorimetry -- 1.3.1 Replacing the Human Eye with an Optoelectronic Sensor -- 1.3.2 Substituting Coloured Filters to Approximate the CIE Colour-Matching Functions -- 1.3.3 Assessing the "Goodness of Fit" of a Set of Colorimeter Filters -- 1.3.4 Schematic Description of Analogue Filter Colorimeters -- 1.3.5 Disadvantages of Analogue Filter Colorimeters -- 1.4 Digital Simulation of Visual Colorimetry -- 1.4.1 Replacing the Analogue Filters with an Abridged Spectrometer -- 1.4.2 Assessing the "Goodness of Fit" of Abridged Spectrometers -- 1.4.3 Schematic Description of Digital Spectrocolorimeters -- 1.4.4 Advantages and Disadvantages of Digital Spectrocolorimeters -- 1.5 Selecting and Using Colorimeters and Spectrocolorimeters -- 1.5.1 Reading and Understanding Specifications and Technical Literature -- 1.5.2 Verifying Performance Specifications -- 1.5.3 Standards of Colour and Colour-difference -- 1.5.4 Sources of Error and Uncertainty in the Measurement of Reflectance, Transmittance and Radiance -- 1.6 Geometric Requirements for Colour Measurements -- 1.6.1 Colour Measurements from Self-Luminous Objects -- 1.6.2 Colour Measurements from Reflecting or Transmitting Objects | |
505 | 8 | |a 1.7 Conclusions and Expectations -- 1.7.1 Current CIE and ISO Activities in Colour and Colour-difference Measurements -- 1.7.2 Quality Management Systems and Colour Measurements -- References -- 2 Colorimetry and Colour Difference -- 2.1 Introduction -- 2.2 Colorimetry -- 2.3 Normalization -- 2.4 Colour Matching Functions -- 2.5 Illuminants -- 2.6 Data for Observers and Illuminants -- 2.7 Range and Interval -- 2.8 Calculation of Chromaticity -- 2.9 Calculation of CIE 1976 Uniform Colour Spaces -- 2.10 Inversion of CIELAB Equations -- 2.11 Colour Difference -- 2.12 Problems with Using UCS Colour Difference -- 2.13 Uniformity of the Components of Colour Difference -- 2.13.1 Chroma -- 2.13.2 Hue -- 2.13.3 Lightness -- 2.14 Viewing Conditions -- 2.15 Surface Characteristics -- 2.16 Acceptability of Colour Differences -- 2.17 Overcoming the Limitations of UCS Colour Difference with Advanced Colour Difference Metrics -- 2.18 CIE94 -- 2.19 CIEDE2000 -- 2.20 Progress on Colour Difference Metrics since CIEDE2000 -- 2.21 3D Colour Difference -- 2.22 Colour Difference in High Luminance Conditions -- 2.23 Colour Difference Formulas Based on Colour Appearance Models -- 2.24 Limitations in the Use of Advanced Colour Difference Metrics in Colour Imaging -- 2.25 Basis Conditions -- 2.25.1 Illuminant -- 2.25.2 Illuminance -- 2.25.3 Sample Separation -- 2.25.4 Sample Size and Image Structure -- 2.26 Colour Difference in Complex Images -- 2.27 Acceptability and Perceptibility -- 2.28 Large vs Small Differences -- 2.29 Deriving Colour Difference Tolerances -- 2.30 Sample Preparation -- 2.31 Psychophysical Experiments -- 2.31.1 Observer Variability and Experience -- 2.32 Colour Difference Judgements by Observers with a Colour Vision Deficiency -- 2.33 Calculating Colour Tolerances from Experimental Data | |
505 | 8 | |a 2.34 Calculation of Discrimination Ellipsoids and Tolerance Distributions -- 2.34.1 Calculation of Parametric Constants in Weightings Functions -- 2.35 Calculation of Acceptability Thresholds -- 2.36 Evaluating Colour Difference Metrics -- 2.37 Conclusion -- References -- 3 Fundamentals of Device Characterization -- 3.1 Introduction -- 3.1.1 Objectives -- 3.2 Characterization Methods -- 3.2.1 Test Charts -- 3.2.2 Calibration -- 3.2.2.1 Matching Aim Values -- 3.2.2.2 Optimizing Performance -- 3.2.2.3 Perceptual Uniformity of Device Values -- 3.2.2.4 Optimization for Machine Vision -- 3.2.3 Linearization -- 3.3 Numerical Models -- 3.3.1 Regression Methods Used in Characterization -- 3.3.1.1 First Order Model -- 3.3.1.2 Higher Order Models -- 3.3.1.3 Choosing the Polynomial Order -- 3.3.1.4 Spline Methods -- 3.3.1.5 Weighted Regression -- 3.3.2 Domain -- 3.3.3 Optimization -- 3.3.4 Noisy and Discontinuous Data -- 3.3.5 Machine Learning -- 3.4 Look-Up Tables with Interpolation -- 3.4.1 Packing -- 3.4.2 Extraction -- 3.4.3 Interpolation -- 3.4.4 LUT Implementation -- 3.4.4.1 LUT implementation in ICC profiles -- 3.5 Evaluating Accuracy -- Training and Test Data -- References -- 4 Characterization of Input Devices -- 4.1 Input Channels -- 4.2 Characterization Goals -- 4.3 Transform Encoding -- 4.4 Dynamic Range -- 4.5 Input Characterization Methods -- 4.5.1 Scanners -- 4.6 Targets -- 4.7 Modelling -- 4.7.1 Digital Cameras -- 4.8 Target-Based Characterization -- 4.9 Targets -- 4.10 Modelling -- 4.10.1 Spectral Sensitivity-based Methods -- 4.10.2 Machine Learning Methods -- 4.10.3 Spectral Characterization of Input Devices -- References -- 5 Color Processing for Digital Cameras -- 5.1 Introduction -- 5.2 Basics of a Camera Sensor -- 5.3 The Camera Pipeline -- 5.3.1 Defective Pixel Correction -- 5.3.2 Black-Level Correction and Normalization | |
505 | 8 | |a 5.3.3 Lens Shading Correction -- 5.3.4 Autofocus, Autoexposure, Auto White Balance -- 5.3.4.1 Autoexposure -- 5.3.4.2 Autofocus -- 5.3.5 White Balance and Auto White Balance -- 5.3.5.1 White Balance -- 5.3.5.2 Manual and Auto White Balance -- 5.3.6 Demosaicing -- 5.3.7 Noise Reduction -- 5.3.8 Color Space Transform to Device-Independent Color Space -- 5.3.9 Photo-Finishing/Rendering -- 5.3.9.1 General and Selective Color Manipulation -- 5.3.9.2 Global and Local Tone-Mapping -- 5.3.9.3 Sharpening/Noise and Grain -- 5.3.9.4 Image Resizing/Super-Resolution -- 5.3.10 Color Mapping to Final Image Encoding Color Space -- 5.3.11 Compression and Save to Storage -- 5.3.12 RAW Image Capture -- 5.4 Multi-Frame Processing -- 5.4.1 HDR Imaging -- 5.4.2 Low-Light/Night-Mode Imaging -- 5.5 Towards the Neural ISP -- 5.6 Concluding Remarks -- Acknowledgment -- References -- 6 Display Calibration -- 6.1 Introduction -- 6.2 From CRT to Contemporary Display Technologies -- 6.3 The Display Never Sleeps... Merging Television and Computer Display Standards -- 6.4 The Evolution of Display Calibration Capabilities -- 6.4.1 Gamut Mapping -- 6.4.2 Manual Calibration -- 6.4.3 One Dimensional Lookup -- 6.3.4 The Matrix Shaper Architecture -- 6.4.5 Single 3-Dimensional LUT -- 6.4.5.1 3DLUT Considerations -- 6.4.6 Hybrid Matrix Shaper Utilizing 3DLUT Followed by a 1DLUT -- 6.5 Measurement Set Requirements -- 6.5.1 Pattern Generation -- 6.5.2 How Many Measurements are Needed? -- 6.5.3 Methods to Mitigate Drift in Display Measurements -- 6.6 Calibration Validation Methodologies -- 6.6.1 Numerical Scales -- 6.6.2 Visual Evaluation Targets and Methods -- 6.7 Low Blue Light Developments -- 6.8 Conclusions -- References -- 7 Characterizing Hard Copy Printers -- 7.1 Introduction -- 7.2 Properties of Hard Copy Printers -- 7.3 Substrates and Inks -- 7.3.1 Fluorescent Whitening Agents | |
505 | 8 | |a 7.3.2 Inks -- 7.4 Colour Gamut -- 7.5 Halftoning -- 7.6 Mechanical Printing Systems -- 7.7 Printing Conditions -- 7.8 Digital Systems -- 7.9 RGB Printers -- 7.10 Test Charts -- 7.11 Printer Models -- 7.12 Block Dye Model -- 7.13 Physical Models -- 7.13.1 Density -- 7.13.2 Dot Area Models -- 7.13.2.1 Murray-Davies -- 7.13.2.2 Yule-Nielsen -- 7.13.2.3 Clapper-Yule -- 7.13.2.4 Additivity Failure -- 7.13.3 Neugebauer -- 7.13.3.1 Modified and Extended Neugebauer Equations -- 7.13.3.2 N-Modified Neugebauer Equations -- 7.13.4 Vector-Corrected Neugebauer Equations -- 7.13.4.1 Cellular Extensions -- 7.13.4.2 Spectral Extensions -- 7.13.4.3 Evaluation of Different Forms of the Neugebauer Equations -- 7.13.5 Colorant Models -- 7.13.5.1 Masking Equations -- 7.13.6 Beer-Bouguer -- 7.13.7 Kubelka-Munk -- 7.13.8 Extensions -- 7.14 Numerical Models and Look-up Tables -- 7.14.1 Black Printer -- 7.14.1.1 Spectral Grey-Component Replacement -- 7.14.1.2 Black Generation Algorithm -- 7.15 Inverting the Model -- 7.16 Multi-Colour and Spot Colour Characterization -- 7.17 Spectral Characterization -- 7.18 White Ink -- 7.19 Reducing the Frequency of Characterization -- 7.20 Conclusions -- References -- 8 Colour Encodings -- 8.1 Introduction -- 8.2 Colour Encoding Components -- 8.3 Colour Spaces -- 8.4 Device and Colour Space Encodings -- 8.5 Colorimetric Interpretation -- 8.6 Image State -- 8.7 Standard 3-Component Colour Space Encodings -- 8.8 Colour Gamut -- 8.8.1 Extended Colour Gamut -- 8.9 Precision and Range -- 8.9.1 High Dynamic Range -- 8.9.2 Negative Values -- 8.10 Luminance/Chrominance Encodings -- 8.11 Conversion to Colorimetry -- 8.12 Implementation Issues -- 8.13 File Formats -- References -- 9 Colour Gamut Communication -- 9.1 Introduction -- 9.1.1 Device Colour Gamut and the Usable Colour Gamut -- 9.1.2 Colour Space -- 9.1.3 Factors Affecting Colour Gamut | |
520 | |a "The Wiley SID book series organizers and our editorial team believe that there is a strong need in the display field for a comprehensive book describing the manufacturing of the display panels used in today's display products. The objective of this book, entitled Flat Panel Display Manufacturing, is to give a broad overview for the key manufacturing topics, serving as a reference text. The book will cover all aspects of the manufacturing processes of TFT LCD and AMOLED, which includes the fabrication processes of the TFT backplane, cell process, module packaging, and test processes. Additionally, the book introduces important topics in manufacturing science and engineering related to quality control, factory and supporting systems architectures, and green manufacturing. The book can serve as a reference book not only for display engineers in the field, but also for students in display fields. One might think that flat panel display manufacturing is a mature subject, but the state of the art manufacturing technologies enabling today's high end TFT LCDs and OLED displays are still evolving for the next generation displays. The editorial team invited authors from major display manufacturers and experts in each manufacturing topic (equipment, processing, etc.). Last but not least, we are also grateful to the Wiley SID book series team, and especially to Dr. Ian Sage for help planning, reviewing the early drafts, and bringing this book to light."-- | ||
650 | 4 | |a MATLAB. | |
650 | 7 | |a MATLAB |2 fast | |
650 | 4 | |a Color | |
650 | 4 | |a Flat panel displays | |
650 | 4 | |a Couleur | |
650 | 4 | |a Écrans plats | |
650 | 7 | |a color (perceived attribute) |2 aat | |
650 | 7 | |a Color |2 fast | |
650 | 7 | |a Flat panel displays |2 fast | |
700 | 1 | |a Green, Phil |d 1953- |0 (DE-588)140922644 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-119-82719-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardback |z 978-1-119-82718-4 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034944562 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30783603 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186479236218880 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Green, Phil 1953- |
author2_role | edt |
author2_variant | p g pg |
author_GND | (DE-588)140922644 |
author_facet | Green, Phil 1953- |
building | Verbundindex |
bvnumber | BV049600113 |
collection | ZDB-30-PQE |
contents | Intro -- Fundamentals and Applications of Colour Engineering -- Contents -- Series Editor's Foreword -- Preface -- Introductory Notes -- 1 Instruments and Methods for the Colour Measurements Required in Colour Engineering -- 1.1 Introduction -- 1.1.1 The Need for Colorimetry -- 1.1.2 The Principles of Colorimetry -- 1.1.3 Making the Transition from What We "See" to Quantifying How We "Match" a Colour -- 1.2 Visual Colorimetry -- 1.2.1 A Method to Uniquely Map the Colour of Lights and Objects -- 1.2.2 Development of the CIE Method of Visual Colorimetry -- 1.2.3 Applications of Visual Colorimetry -- 1.2.4 Disadvantages of Visual Colorimetry -- 1.3 Analogue Simulation of Visual Colorimetry -- 1.3.1 Replacing the Human Eye with an Optoelectronic Sensor -- 1.3.2 Substituting Coloured Filters to Approximate the CIE Colour-Matching Functions -- 1.3.3 Assessing the "Goodness of Fit" of a Set of Colorimeter Filters -- 1.3.4 Schematic Description of Analogue Filter Colorimeters -- 1.3.5 Disadvantages of Analogue Filter Colorimeters -- 1.4 Digital Simulation of Visual Colorimetry -- 1.4.1 Replacing the Analogue Filters with an Abridged Spectrometer -- 1.4.2 Assessing the "Goodness of Fit" of Abridged Spectrometers -- 1.4.3 Schematic Description of Digital Spectrocolorimeters -- 1.4.4 Advantages and Disadvantages of Digital Spectrocolorimeters -- 1.5 Selecting and Using Colorimeters and Spectrocolorimeters -- 1.5.1 Reading and Understanding Specifications and Technical Literature -- 1.5.2 Verifying Performance Specifications -- 1.5.3 Standards of Colour and Colour-difference -- 1.5.4 Sources of Error and Uncertainty in the Measurement of Reflectance, Transmittance and Radiance -- 1.6 Geometric Requirements for Colour Measurements -- 1.6.1 Colour Measurements from Self-Luminous Objects -- 1.6.2 Colour Measurements from Reflecting or Transmitting Objects 1.7 Conclusions and Expectations -- 1.7.1 Current CIE and ISO Activities in Colour and Colour-difference Measurements -- 1.7.2 Quality Management Systems and Colour Measurements -- References -- 2 Colorimetry and Colour Difference -- 2.1 Introduction -- 2.2 Colorimetry -- 2.3 Normalization -- 2.4 Colour Matching Functions -- 2.5 Illuminants -- 2.6 Data for Observers and Illuminants -- 2.7 Range and Interval -- 2.8 Calculation of Chromaticity -- 2.9 Calculation of CIE 1976 Uniform Colour Spaces -- 2.10 Inversion of CIELAB Equations -- 2.11 Colour Difference -- 2.12 Problems with Using UCS Colour Difference -- 2.13 Uniformity of the Components of Colour Difference -- 2.13.1 Chroma -- 2.13.2 Hue -- 2.13.3 Lightness -- 2.14 Viewing Conditions -- 2.15 Surface Characteristics -- 2.16 Acceptability of Colour Differences -- 2.17 Overcoming the Limitations of UCS Colour Difference with Advanced Colour Difference Metrics -- 2.18 CIE94 -- 2.19 CIEDE2000 -- 2.20 Progress on Colour Difference Metrics since CIEDE2000 -- 2.21 3D Colour Difference -- 2.22 Colour Difference in High Luminance Conditions -- 2.23 Colour Difference Formulas Based on Colour Appearance Models -- 2.24 Limitations in the Use of Advanced Colour Difference Metrics in Colour Imaging -- 2.25 Basis Conditions -- 2.25.1 Illuminant -- 2.25.2 Illuminance -- 2.25.3 Sample Separation -- 2.25.4 Sample Size and Image Structure -- 2.26 Colour Difference in Complex Images -- 2.27 Acceptability and Perceptibility -- 2.28 Large vs Small Differences -- 2.29 Deriving Colour Difference Tolerances -- 2.30 Sample Preparation -- 2.31 Psychophysical Experiments -- 2.31.1 Observer Variability and Experience -- 2.32 Colour Difference Judgements by Observers with a Colour Vision Deficiency -- 2.33 Calculating Colour Tolerances from Experimental Data 2.34 Calculation of Discrimination Ellipsoids and Tolerance Distributions -- 2.34.1 Calculation of Parametric Constants in Weightings Functions -- 2.35 Calculation of Acceptability Thresholds -- 2.36 Evaluating Colour Difference Metrics -- 2.37 Conclusion -- References -- 3 Fundamentals of Device Characterization -- 3.1 Introduction -- 3.1.1 Objectives -- 3.2 Characterization Methods -- 3.2.1 Test Charts -- 3.2.2 Calibration -- 3.2.2.1 Matching Aim Values -- 3.2.2.2 Optimizing Performance -- 3.2.2.3 Perceptual Uniformity of Device Values -- 3.2.2.4 Optimization for Machine Vision -- 3.2.3 Linearization -- 3.3 Numerical Models -- 3.3.1 Regression Methods Used in Characterization -- 3.3.1.1 First Order Model -- 3.3.1.2 Higher Order Models -- 3.3.1.3 Choosing the Polynomial Order -- 3.3.1.4 Spline Methods -- 3.3.1.5 Weighted Regression -- 3.3.2 Domain -- 3.3.3 Optimization -- 3.3.4 Noisy and Discontinuous Data -- 3.3.5 Machine Learning -- 3.4 Look-Up Tables with Interpolation -- 3.4.1 Packing -- 3.4.2 Extraction -- 3.4.3 Interpolation -- 3.4.4 LUT Implementation -- 3.4.4.1 LUT implementation in ICC profiles -- 3.5 Evaluating Accuracy -- Training and Test Data -- References -- 4 Characterization of Input Devices -- 4.1 Input Channels -- 4.2 Characterization Goals -- 4.3 Transform Encoding -- 4.4 Dynamic Range -- 4.5 Input Characterization Methods -- 4.5.1 Scanners -- 4.6 Targets -- 4.7 Modelling -- 4.7.1 Digital Cameras -- 4.8 Target-Based Characterization -- 4.9 Targets -- 4.10 Modelling -- 4.10.1 Spectral Sensitivity-based Methods -- 4.10.2 Machine Learning Methods -- 4.10.3 Spectral Characterization of Input Devices -- References -- 5 Color Processing for Digital Cameras -- 5.1 Introduction -- 5.2 Basics of a Camera Sensor -- 5.3 The Camera Pipeline -- 5.3.1 Defective Pixel Correction -- 5.3.2 Black-Level Correction and Normalization 5.3.3 Lens Shading Correction -- 5.3.4 Autofocus, Autoexposure, Auto White Balance -- 5.3.4.1 Autoexposure -- 5.3.4.2 Autofocus -- 5.3.5 White Balance and Auto White Balance -- 5.3.5.1 White Balance -- 5.3.5.2 Manual and Auto White Balance -- 5.3.6 Demosaicing -- 5.3.7 Noise Reduction -- 5.3.8 Color Space Transform to Device-Independent Color Space -- 5.3.9 Photo-Finishing/Rendering -- 5.3.9.1 General and Selective Color Manipulation -- 5.3.9.2 Global and Local Tone-Mapping -- 5.3.9.3 Sharpening/Noise and Grain -- 5.3.9.4 Image Resizing/Super-Resolution -- 5.3.10 Color Mapping to Final Image Encoding Color Space -- 5.3.11 Compression and Save to Storage -- 5.3.12 RAW Image Capture -- 5.4 Multi-Frame Processing -- 5.4.1 HDR Imaging -- 5.4.2 Low-Light/Night-Mode Imaging -- 5.5 Towards the Neural ISP -- 5.6 Concluding Remarks -- Acknowledgment -- References -- 6 Display Calibration -- 6.1 Introduction -- 6.2 From CRT to Contemporary Display Technologies -- 6.3 The Display Never Sleeps... Merging Television and Computer Display Standards -- 6.4 The Evolution of Display Calibration Capabilities -- 6.4.1 Gamut Mapping -- 6.4.2 Manual Calibration -- 6.4.3 One Dimensional Lookup -- 6.3.4 The Matrix Shaper Architecture -- 6.4.5 Single 3-Dimensional LUT -- 6.4.5.1 3DLUT Considerations -- 6.4.6 Hybrid Matrix Shaper Utilizing 3DLUT Followed by a 1DLUT -- 6.5 Measurement Set Requirements -- 6.5.1 Pattern Generation -- 6.5.2 How Many Measurements are Needed? -- 6.5.3 Methods to Mitigate Drift in Display Measurements -- 6.6 Calibration Validation Methodologies -- 6.6.1 Numerical Scales -- 6.6.2 Visual Evaluation Targets and Methods -- 6.7 Low Blue Light Developments -- 6.8 Conclusions -- References -- 7 Characterizing Hard Copy Printers -- 7.1 Introduction -- 7.2 Properties of Hard Copy Printers -- 7.3 Substrates and Inks -- 7.3.1 Fluorescent Whitening Agents 7.3.2 Inks -- 7.4 Colour Gamut -- 7.5 Halftoning -- 7.6 Mechanical Printing Systems -- 7.7 Printing Conditions -- 7.8 Digital Systems -- 7.9 RGB Printers -- 7.10 Test Charts -- 7.11 Printer Models -- 7.12 Block Dye Model -- 7.13 Physical Models -- 7.13.1 Density -- 7.13.2 Dot Area Models -- 7.13.2.1 Murray-Davies -- 7.13.2.2 Yule-Nielsen -- 7.13.2.3 Clapper-Yule -- 7.13.2.4 Additivity Failure -- 7.13.3 Neugebauer -- 7.13.3.1 Modified and Extended Neugebauer Equations -- 7.13.3.2 N-Modified Neugebauer Equations -- 7.13.4 Vector-Corrected Neugebauer Equations -- 7.13.4.1 Cellular Extensions -- 7.13.4.2 Spectral Extensions -- 7.13.4.3 Evaluation of Different Forms of the Neugebauer Equations -- 7.13.5 Colorant Models -- 7.13.5.1 Masking Equations -- 7.13.6 Beer-Bouguer -- 7.13.7 Kubelka-Munk -- 7.13.8 Extensions -- 7.14 Numerical Models and Look-up Tables -- 7.14.1 Black Printer -- 7.14.1.1 Spectral Grey-Component Replacement -- 7.14.1.2 Black Generation Algorithm -- 7.15 Inverting the Model -- 7.16 Multi-Colour and Spot Colour Characterization -- 7.17 Spectral Characterization -- 7.18 White Ink -- 7.19 Reducing the Frequency of Characterization -- 7.20 Conclusions -- References -- 8 Colour Encodings -- 8.1 Introduction -- 8.2 Colour Encoding Components -- 8.3 Colour Spaces -- 8.4 Device and Colour Space Encodings -- 8.5 Colorimetric Interpretation -- 8.6 Image State -- 8.7 Standard 3-Component Colour Space Encodings -- 8.8 Colour Gamut -- 8.8.1 Extended Colour Gamut -- 8.9 Precision and Range -- 8.9.1 High Dynamic Range -- 8.9.2 Negative Values -- 8.10 Luminance/Chrominance Encodings -- 8.11 Conversion to Colorimetry -- 8.12 Implementation Issues -- 8.13 File Formats -- References -- 9 Colour Gamut Communication -- 9.1 Introduction -- 9.1.1 Device Colour Gamut and the Usable Colour Gamut -- 9.1.2 Colour Space -- 9.1.3 Factors Affecting Colour Gamut |
ctrlnum | (OCoLC)1427323854 (DE-599)BVBBV049600113 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12312nmm a2200493 c 4500</leader><controlfield tag="001">BV049600113</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240306s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119827207</subfield><subfield code="9">978-1-119-82720-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1427323854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049600113</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals and applications of colour engineering</subfield><subfield code="c">edited by Phil Green</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 374 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley SID series in display technology</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Fundamentals and Applications of Colour Engineering -- Contents -- Series Editor's Foreword -- Preface -- Introductory Notes -- 1 Instruments and Methods for the Colour Measurements Required in Colour Engineering -- 1.1 Introduction -- 1.1.1 The Need for Colorimetry -- 1.1.2 The Principles of Colorimetry -- 1.1.3 Making the Transition from What We "See" to Quantifying How We "Match" a Colour -- 1.2 Visual Colorimetry -- 1.2.1 A Method to Uniquely Map the Colour of Lights and Objects -- 1.2.2 Development of the CIE Method of Visual Colorimetry -- 1.2.3 Applications of Visual Colorimetry -- 1.2.4 Disadvantages of Visual Colorimetry -- 1.3 Analogue Simulation of Visual Colorimetry -- 1.3.1 Replacing the Human Eye with an Optoelectronic Sensor -- 1.3.2 Substituting Coloured Filters to Approximate the CIE Colour-Matching Functions -- 1.3.3 Assessing the "Goodness of Fit" of a Set of Colorimeter Filters -- 1.3.4 Schematic Description of Analogue Filter Colorimeters -- 1.3.5 Disadvantages of Analogue Filter Colorimeters -- 1.4 Digital Simulation of Visual Colorimetry -- 1.4.1 Replacing the Analogue Filters with an Abridged Spectrometer -- 1.4.2 Assessing the "Goodness of Fit" of Abridged Spectrometers -- 1.4.3 Schematic Description of Digital Spectrocolorimeters -- 1.4.4 Advantages and Disadvantages of Digital Spectrocolorimeters -- 1.5 Selecting and Using Colorimeters and Spectrocolorimeters -- 1.5.1 Reading and Understanding Specifications and Technical Literature -- 1.5.2 Verifying Performance Specifications -- 1.5.3 Standards of Colour and Colour-difference -- 1.5.4 Sources of Error and Uncertainty in the Measurement of Reflectance, Transmittance and Radiance -- 1.6 Geometric Requirements for Colour Measurements -- 1.6.1 Colour Measurements from Self-Luminous Objects -- 1.6.2 Colour Measurements from Reflecting or Transmitting Objects</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.7 Conclusions and Expectations -- 1.7.1 Current CIE and ISO Activities in Colour and Colour-difference Measurements -- 1.7.2 Quality Management Systems and Colour Measurements -- References -- 2 Colorimetry and Colour Difference -- 2.1 Introduction -- 2.2 Colorimetry -- 2.3 Normalization -- 2.4 Colour Matching Functions -- 2.5 Illuminants -- 2.6 Data for Observers and Illuminants -- 2.7 Range and Interval -- 2.8 Calculation of Chromaticity -- 2.9 Calculation of CIE 1976 Uniform Colour Spaces -- 2.10 Inversion of CIELAB Equations -- 2.11 Colour Difference -- 2.12 Problems with Using UCS Colour Difference -- 2.13 Uniformity of the Components of Colour Difference -- 2.13.1 Chroma -- 2.13.2 Hue -- 2.13.3 Lightness -- 2.14 Viewing Conditions -- 2.15 Surface Characteristics -- 2.16 Acceptability of Colour Differences -- 2.17 Overcoming the Limitations of UCS Colour Difference with Advanced Colour Difference Metrics -- 2.18 CIE94 -- 2.19 CIEDE2000 -- 2.20 Progress on Colour Difference Metrics since CIEDE2000 -- 2.21 3D Colour Difference -- 2.22 Colour Difference in High Luminance Conditions -- 2.23 Colour Difference Formulas Based on Colour Appearance Models -- 2.24 Limitations in the Use of Advanced Colour Difference Metrics in Colour Imaging -- 2.25 Basis Conditions -- 2.25.1 Illuminant -- 2.25.2 Illuminance -- 2.25.3 Sample Separation -- 2.25.4 Sample Size and Image Structure -- 2.26 Colour Difference in Complex Images -- 2.27 Acceptability and Perceptibility -- 2.28 Large vs Small Differences -- 2.29 Deriving Colour Difference Tolerances -- 2.30 Sample Preparation -- 2.31 Psychophysical Experiments -- 2.31.1 Observer Variability and Experience -- 2.32 Colour Difference Judgements by Observers with a Colour Vision Deficiency -- 2.33 Calculating Colour Tolerances from Experimental Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.34 Calculation of Discrimination Ellipsoids and Tolerance Distributions -- 2.34.1 Calculation of Parametric Constants in Weightings Functions -- 2.35 Calculation of Acceptability Thresholds -- 2.36 Evaluating Colour Difference Metrics -- 2.37 Conclusion -- References -- 3 Fundamentals of Device Characterization -- 3.1 Introduction -- 3.1.1 Objectives -- 3.2 Characterization Methods -- 3.2.1 Test Charts -- 3.2.2 Calibration -- 3.2.2.1 Matching Aim Values -- 3.2.2.2 Optimizing Performance -- 3.2.2.3 Perceptual Uniformity of Device Values -- 3.2.2.4 Optimization for Machine Vision -- 3.2.3 Linearization -- 3.3 Numerical Models -- 3.3.1 Regression Methods Used in Characterization -- 3.3.1.1 First Order Model -- 3.3.1.2 Higher Order Models -- 3.3.1.3 Choosing the Polynomial Order -- 3.3.1.4 Spline Methods -- 3.3.1.5 Weighted Regression -- 3.3.2 Domain -- 3.3.3 Optimization -- 3.3.4 Noisy and Discontinuous Data -- 3.3.5 Machine Learning -- 3.4 Look-Up Tables with Interpolation -- 3.4.1 Packing -- 3.4.2 Extraction -- 3.4.3 Interpolation -- 3.4.4 LUT Implementation -- 3.4.4.1 LUT implementation in ICC profiles -- 3.5 Evaluating Accuracy -- Training and Test Data -- References -- 4 Characterization of Input Devices -- 4.1 Input Channels -- 4.2 Characterization Goals -- 4.3 Transform Encoding -- 4.4 Dynamic Range -- 4.5 Input Characterization Methods -- 4.5.1 Scanners -- 4.6 Targets -- 4.7 Modelling -- 4.7.1 Digital Cameras -- 4.8 Target-Based Characterization -- 4.9 Targets -- 4.10 Modelling -- 4.10.1 Spectral Sensitivity-based Methods -- 4.10.2 Machine Learning Methods -- 4.10.3 Spectral Characterization of Input Devices -- References -- 5 Color Processing for Digital Cameras -- 5.1 Introduction -- 5.2 Basics of a Camera Sensor -- 5.3 The Camera Pipeline -- 5.3.1 Defective Pixel Correction -- 5.3.2 Black-Level Correction and Normalization</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.3 Lens Shading Correction -- 5.3.4 Autofocus, Autoexposure, Auto White Balance -- 5.3.4.1 Autoexposure -- 5.3.4.2 Autofocus -- 5.3.5 White Balance and Auto White Balance -- 5.3.5.1 White Balance -- 5.3.5.2 Manual and Auto White Balance -- 5.3.6 Demosaicing -- 5.3.7 Noise Reduction -- 5.3.8 Color Space Transform to Device-Independent Color Space -- 5.3.9 Photo-Finishing/Rendering -- 5.3.9.1 General and Selective Color Manipulation -- 5.3.9.2 Global and Local Tone-Mapping -- 5.3.9.3 Sharpening/Noise and Grain -- 5.3.9.4 Image Resizing/Super-Resolution -- 5.3.10 Color Mapping to Final Image Encoding Color Space -- 5.3.11 Compression and Save to Storage -- 5.3.12 RAW Image Capture -- 5.4 Multi-Frame Processing -- 5.4.1 HDR Imaging -- 5.4.2 Low-Light/Night-Mode Imaging -- 5.5 Towards the Neural ISP -- 5.6 Concluding Remarks -- Acknowledgment -- References -- 6 Display Calibration -- 6.1 Introduction -- 6.2 From CRT to Contemporary Display Technologies -- 6.3 The Display Never Sleeps... Merging Television and Computer Display Standards -- 6.4 The Evolution of Display Calibration Capabilities -- 6.4.1 Gamut Mapping -- 6.4.2 Manual Calibration -- 6.4.3 One Dimensional Lookup -- 6.3.4 The Matrix Shaper Architecture -- 6.4.5 Single 3-Dimensional LUT -- 6.4.5.1 3DLUT Considerations -- 6.4.6 Hybrid Matrix Shaper Utilizing 3DLUT Followed by a 1DLUT -- 6.5 Measurement Set Requirements -- 6.5.1 Pattern Generation -- 6.5.2 How Many Measurements are Needed? -- 6.5.3 Methods to Mitigate Drift in Display Measurements -- 6.6 Calibration Validation Methodologies -- 6.6.1 Numerical Scales -- 6.6.2 Visual Evaluation Targets and Methods -- 6.7 Low Blue Light Developments -- 6.8 Conclusions -- References -- 7 Characterizing Hard Copy Printers -- 7.1 Introduction -- 7.2 Properties of Hard Copy Printers -- 7.3 Substrates and Inks -- 7.3.1 Fluorescent Whitening Agents</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.3.2 Inks -- 7.4 Colour Gamut -- 7.5 Halftoning -- 7.6 Mechanical Printing Systems -- 7.7 Printing Conditions -- 7.8 Digital Systems -- 7.9 RGB Printers -- 7.10 Test Charts -- 7.11 Printer Models -- 7.12 Block Dye Model -- 7.13 Physical Models -- 7.13.1 Density -- 7.13.2 Dot Area Models -- 7.13.2.1 Murray-Davies -- 7.13.2.2 Yule-Nielsen -- 7.13.2.3 Clapper-Yule -- 7.13.2.4 Additivity Failure -- 7.13.3 Neugebauer -- 7.13.3.1 Modified and Extended Neugebauer Equations -- 7.13.3.2 N-Modified Neugebauer Equations -- 7.13.4 Vector-Corrected Neugebauer Equations -- 7.13.4.1 Cellular Extensions -- 7.13.4.2 Spectral Extensions -- 7.13.4.3 Evaluation of Different Forms of the Neugebauer Equations -- 7.13.5 Colorant Models -- 7.13.5.1 Masking Equations -- 7.13.6 Beer-Bouguer -- 7.13.7 Kubelka-Munk -- 7.13.8 Extensions -- 7.14 Numerical Models and Look-up Tables -- 7.14.1 Black Printer -- 7.14.1.1 Spectral Grey-Component Replacement -- 7.14.1.2 Black Generation Algorithm -- 7.15 Inverting the Model -- 7.16 Multi-Colour and Spot Colour Characterization -- 7.17 Spectral Characterization -- 7.18 White Ink -- 7.19 Reducing the Frequency of Characterization -- 7.20 Conclusions -- References -- 8 Colour Encodings -- 8.1 Introduction -- 8.2 Colour Encoding Components -- 8.3 Colour Spaces -- 8.4 Device and Colour Space Encodings -- 8.5 Colorimetric Interpretation -- 8.6 Image State -- 8.7 Standard 3-Component Colour Space Encodings -- 8.8 Colour Gamut -- 8.8.1 Extended Colour Gamut -- 8.9 Precision and Range -- 8.9.1 High Dynamic Range -- 8.9.2 Negative Values -- 8.10 Luminance/Chrominance Encodings -- 8.11 Conversion to Colorimetry -- 8.12 Implementation Issues -- 8.13 File Formats -- References -- 9 Colour Gamut Communication -- 9.1 Introduction -- 9.1.1 Device Colour Gamut and the Usable Colour Gamut -- 9.1.2 Colour Space -- 9.1.3 Factors Affecting Colour Gamut</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The Wiley SID book series organizers and our editorial team believe that there is a strong need in the display field for a comprehensive book describing the manufacturing of the display panels used in today's display products. The objective of this book, entitled Flat Panel Display Manufacturing, is to give a broad overview for the key manufacturing topics, serving as a reference text. The book will cover all aspects of the manufacturing processes of TFT LCD and AMOLED, which includes the fabrication processes of the TFT backplane, cell process, module packaging, and test processes. Additionally, the book introduces important topics in manufacturing science and engineering related to quality control, factory and supporting systems architectures, and green manufacturing. The book can serve as a reference book not only for display engineers in the field, but also for students in display fields. One might think that flat panel display manufacturing is a mature subject, but the state of the art manufacturing technologies enabling today's high end TFT LCDs and OLED displays are still evolving for the next generation displays. The editorial team invited authors from major display manufacturers and experts in each manufacturing topic (equipment, processing, etc.). Last but not least, we are also grateful to the Wiley SID book series team, and especially to Dr. Ian Sage for help planning, reviewing the early drafts, and bringing this book to light."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATLAB.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATLAB</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Color</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flat panel displays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Couleur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Écrans plats</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">color (perceived attribute)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Color</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flat panel displays</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Green, Phil</subfield><subfield code="d">1953-</subfield><subfield code="0">(DE-588)140922644</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-119-82719-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardback</subfield><subfield code="z">978-1-119-82718-4</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034944562</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30783603</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049600113 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:34:35Z |
indexdate | 2024-07-10T10:11:47Z |
institution | BVB |
isbn | 9781119827207 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034944562 |
oclc_num | 1427323854 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (xxiv, 374 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Wiley |
record_format | marc |
series2 | Wiley SID series in display technology |
spelling | Fundamentals and applications of colour engineering edited by Phil Green Hoboken, NJ Wiley 2024 1 Online-Ressource (xxiv, 374 Seiten) txt rdacontent c rdamedia cr rdacarrier Wiley SID series in display technology Intro -- Fundamentals and Applications of Colour Engineering -- Contents -- Series Editor's Foreword -- Preface -- Introductory Notes -- 1 Instruments and Methods for the Colour Measurements Required in Colour Engineering -- 1.1 Introduction -- 1.1.1 The Need for Colorimetry -- 1.1.2 The Principles of Colorimetry -- 1.1.3 Making the Transition from What We "See" to Quantifying How We "Match" a Colour -- 1.2 Visual Colorimetry -- 1.2.1 A Method to Uniquely Map the Colour of Lights and Objects -- 1.2.2 Development of the CIE Method of Visual Colorimetry -- 1.2.3 Applications of Visual Colorimetry -- 1.2.4 Disadvantages of Visual Colorimetry -- 1.3 Analogue Simulation of Visual Colorimetry -- 1.3.1 Replacing the Human Eye with an Optoelectronic Sensor -- 1.3.2 Substituting Coloured Filters to Approximate the CIE Colour-Matching Functions -- 1.3.3 Assessing the "Goodness of Fit" of a Set of Colorimeter Filters -- 1.3.4 Schematic Description of Analogue Filter Colorimeters -- 1.3.5 Disadvantages of Analogue Filter Colorimeters -- 1.4 Digital Simulation of Visual Colorimetry -- 1.4.1 Replacing the Analogue Filters with an Abridged Spectrometer -- 1.4.2 Assessing the "Goodness of Fit" of Abridged Spectrometers -- 1.4.3 Schematic Description of Digital Spectrocolorimeters -- 1.4.4 Advantages and Disadvantages of Digital Spectrocolorimeters -- 1.5 Selecting and Using Colorimeters and Spectrocolorimeters -- 1.5.1 Reading and Understanding Specifications and Technical Literature -- 1.5.2 Verifying Performance Specifications -- 1.5.3 Standards of Colour and Colour-difference -- 1.5.4 Sources of Error and Uncertainty in the Measurement of Reflectance, Transmittance and Radiance -- 1.6 Geometric Requirements for Colour Measurements -- 1.6.1 Colour Measurements from Self-Luminous Objects -- 1.6.2 Colour Measurements from Reflecting or Transmitting Objects 1.7 Conclusions and Expectations -- 1.7.1 Current CIE and ISO Activities in Colour and Colour-difference Measurements -- 1.7.2 Quality Management Systems and Colour Measurements -- References -- 2 Colorimetry and Colour Difference -- 2.1 Introduction -- 2.2 Colorimetry -- 2.3 Normalization -- 2.4 Colour Matching Functions -- 2.5 Illuminants -- 2.6 Data for Observers and Illuminants -- 2.7 Range and Interval -- 2.8 Calculation of Chromaticity -- 2.9 Calculation of CIE 1976 Uniform Colour Spaces -- 2.10 Inversion of CIELAB Equations -- 2.11 Colour Difference -- 2.12 Problems with Using UCS Colour Difference -- 2.13 Uniformity of the Components of Colour Difference -- 2.13.1 Chroma -- 2.13.2 Hue -- 2.13.3 Lightness -- 2.14 Viewing Conditions -- 2.15 Surface Characteristics -- 2.16 Acceptability of Colour Differences -- 2.17 Overcoming the Limitations of UCS Colour Difference with Advanced Colour Difference Metrics -- 2.18 CIE94 -- 2.19 CIEDE2000 -- 2.20 Progress on Colour Difference Metrics since CIEDE2000 -- 2.21 3D Colour Difference -- 2.22 Colour Difference in High Luminance Conditions -- 2.23 Colour Difference Formulas Based on Colour Appearance Models -- 2.24 Limitations in the Use of Advanced Colour Difference Metrics in Colour Imaging -- 2.25 Basis Conditions -- 2.25.1 Illuminant -- 2.25.2 Illuminance -- 2.25.3 Sample Separation -- 2.25.4 Sample Size and Image Structure -- 2.26 Colour Difference in Complex Images -- 2.27 Acceptability and Perceptibility -- 2.28 Large vs Small Differences -- 2.29 Deriving Colour Difference Tolerances -- 2.30 Sample Preparation -- 2.31 Psychophysical Experiments -- 2.31.1 Observer Variability and Experience -- 2.32 Colour Difference Judgements by Observers with a Colour Vision Deficiency -- 2.33 Calculating Colour Tolerances from Experimental Data 2.34 Calculation of Discrimination Ellipsoids and Tolerance Distributions -- 2.34.1 Calculation of Parametric Constants in Weightings Functions -- 2.35 Calculation of Acceptability Thresholds -- 2.36 Evaluating Colour Difference Metrics -- 2.37 Conclusion -- References -- 3 Fundamentals of Device Characterization -- 3.1 Introduction -- 3.1.1 Objectives -- 3.2 Characterization Methods -- 3.2.1 Test Charts -- 3.2.2 Calibration -- 3.2.2.1 Matching Aim Values -- 3.2.2.2 Optimizing Performance -- 3.2.2.3 Perceptual Uniformity of Device Values -- 3.2.2.4 Optimization for Machine Vision -- 3.2.3 Linearization -- 3.3 Numerical Models -- 3.3.1 Regression Methods Used in Characterization -- 3.3.1.1 First Order Model -- 3.3.1.2 Higher Order Models -- 3.3.1.3 Choosing the Polynomial Order -- 3.3.1.4 Spline Methods -- 3.3.1.5 Weighted Regression -- 3.3.2 Domain -- 3.3.3 Optimization -- 3.3.4 Noisy and Discontinuous Data -- 3.3.5 Machine Learning -- 3.4 Look-Up Tables with Interpolation -- 3.4.1 Packing -- 3.4.2 Extraction -- 3.4.3 Interpolation -- 3.4.4 LUT Implementation -- 3.4.4.1 LUT implementation in ICC profiles -- 3.5 Evaluating Accuracy -- Training and Test Data -- References -- 4 Characterization of Input Devices -- 4.1 Input Channels -- 4.2 Characterization Goals -- 4.3 Transform Encoding -- 4.4 Dynamic Range -- 4.5 Input Characterization Methods -- 4.5.1 Scanners -- 4.6 Targets -- 4.7 Modelling -- 4.7.1 Digital Cameras -- 4.8 Target-Based Characterization -- 4.9 Targets -- 4.10 Modelling -- 4.10.1 Spectral Sensitivity-based Methods -- 4.10.2 Machine Learning Methods -- 4.10.3 Spectral Characterization of Input Devices -- References -- 5 Color Processing for Digital Cameras -- 5.1 Introduction -- 5.2 Basics of a Camera Sensor -- 5.3 The Camera Pipeline -- 5.3.1 Defective Pixel Correction -- 5.3.2 Black-Level Correction and Normalization 5.3.3 Lens Shading Correction -- 5.3.4 Autofocus, Autoexposure, Auto White Balance -- 5.3.4.1 Autoexposure -- 5.3.4.2 Autofocus -- 5.3.5 White Balance and Auto White Balance -- 5.3.5.1 White Balance -- 5.3.5.2 Manual and Auto White Balance -- 5.3.6 Demosaicing -- 5.3.7 Noise Reduction -- 5.3.8 Color Space Transform to Device-Independent Color Space -- 5.3.9 Photo-Finishing/Rendering -- 5.3.9.1 General and Selective Color Manipulation -- 5.3.9.2 Global and Local Tone-Mapping -- 5.3.9.3 Sharpening/Noise and Grain -- 5.3.9.4 Image Resizing/Super-Resolution -- 5.3.10 Color Mapping to Final Image Encoding Color Space -- 5.3.11 Compression and Save to Storage -- 5.3.12 RAW Image Capture -- 5.4 Multi-Frame Processing -- 5.4.1 HDR Imaging -- 5.4.2 Low-Light/Night-Mode Imaging -- 5.5 Towards the Neural ISP -- 5.6 Concluding Remarks -- Acknowledgment -- References -- 6 Display Calibration -- 6.1 Introduction -- 6.2 From CRT to Contemporary Display Technologies -- 6.3 The Display Never Sleeps... Merging Television and Computer Display Standards -- 6.4 The Evolution of Display Calibration Capabilities -- 6.4.1 Gamut Mapping -- 6.4.2 Manual Calibration -- 6.4.3 One Dimensional Lookup -- 6.3.4 The Matrix Shaper Architecture -- 6.4.5 Single 3-Dimensional LUT -- 6.4.5.1 3DLUT Considerations -- 6.4.6 Hybrid Matrix Shaper Utilizing 3DLUT Followed by a 1DLUT -- 6.5 Measurement Set Requirements -- 6.5.1 Pattern Generation -- 6.5.2 How Many Measurements are Needed? -- 6.5.3 Methods to Mitigate Drift in Display Measurements -- 6.6 Calibration Validation Methodologies -- 6.6.1 Numerical Scales -- 6.6.2 Visual Evaluation Targets and Methods -- 6.7 Low Blue Light Developments -- 6.8 Conclusions -- References -- 7 Characterizing Hard Copy Printers -- 7.1 Introduction -- 7.2 Properties of Hard Copy Printers -- 7.3 Substrates and Inks -- 7.3.1 Fluorescent Whitening Agents 7.3.2 Inks -- 7.4 Colour Gamut -- 7.5 Halftoning -- 7.6 Mechanical Printing Systems -- 7.7 Printing Conditions -- 7.8 Digital Systems -- 7.9 RGB Printers -- 7.10 Test Charts -- 7.11 Printer Models -- 7.12 Block Dye Model -- 7.13 Physical Models -- 7.13.1 Density -- 7.13.2 Dot Area Models -- 7.13.2.1 Murray-Davies -- 7.13.2.2 Yule-Nielsen -- 7.13.2.3 Clapper-Yule -- 7.13.2.4 Additivity Failure -- 7.13.3 Neugebauer -- 7.13.3.1 Modified and Extended Neugebauer Equations -- 7.13.3.2 N-Modified Neugebauer Equations -- 7.13.4 Vector-Corrected Neugebauer Equations -- 7.13.4.1 Cellular Extensions -- 7.13.4.2 Spectral Extensions -- 7.13.4.3 Evaluation of Different Forms of the Neugebauer Equations -- 7.13.5 Colorant Models -- 7.13.5.1 Masking Equations -- 7.13.6 Beer-Bouguer -- 7.13.7 Kubelka-Munk -- 7.13.8 Extensions -- 7.14 Numerical Models and Look-up Tables -- 7.14.1 Black Printer -- 7.14.1.1 Spectral Grey-Component Replacement -- 7.14.1.2 Black Generation Algorithm -- 7.15 Inverting the Model -- 7.16 Multi-Colour and Spot Colour Characterization -- 7.17 Spectral Characterization -- 7.18 White Ink -- 7.19 Reducing the Frequency of Characterization -- 7.20 Conclusions -- References -- 8 Colour Encodings -- 8.1 Introduction -- 8.2 Colour Encoding Components -- 8.3 Colour Spaces -- 8.4 Device and Colour Space Encodings -- 8.5 Colorimetric Interpretation -- 8.6 Image State -- 8.7 Standard 3-Component Colour Space Encodings -- 8.8 Colour Gamut -- 8.8.1 Extended Colour Gamut -- 8.9 Precision and Range -- 8.9.1 High Dynamic Range -- 8.9.2 Negative Values -- 8.10 Luminance/Chrominance Encodings -- 8.11 Conversion to Colorimetry -- 8.12 Implementation Issues -- 8.13 File Formats -- References -- 9 Colour Gamut Communication -- 9.1 Introduction -- 9.1.1 Device Colour Gamut and the Usable Colour Gamut -- 9.1.2 Colour Space -- 9.1.3 Factors Affecting Colour Gamut "The Wiley SID book series organizers and our editorial team believe that there is a strong need in the display field for a comprehensive book describing the manufacturing of the display panels used in today's display products. The objective of this book, entitled Flat Panel Display Manufacturing, is to give a broad overview for the key manufacturing topics, serving as a reference text. The book will cover all aspects of the manufacturing processes of TFT LCD and AMOLED, which includes the fabrication processes of the TFT backplane, cell process, module packaging, and test processes. Additionally, the book introduces important topics in manufacturing science and engineering related to quality control, factory and supporting systems architectures, and green manufacturing. The book can serve as a reference book not only for display engineers in the field, but also for students in display fields. One might think that flat panel display manufacturing is a mature subject, but the state of the art manufacturing technologies enabling today's high end TFT LCDs and OLED displays are still evolving for the next generation displays. The editorial team invited authors from major display manufacturers and experts in each manufacturing topic (equipment, processing, etc.). Last but not least, we are also grateful to the Wiley SID book series team, and especially to Dr. Ian Sage for help planning, reviewing the early drafts, and bringing this book to light."-- MATLAB. MATLAB fast Color Flat panel displays Couleur Écrans plats color (perceived attribute) aat Color fast Flat panel displays fast Green, Phil 1953- (DE-588)140922644 edt Erscheint auch als Online-Ausgabe, PDF 978-1-119-82719-1 Erscheint auch als Druck-Ausgabe, Hardback 978-1-119-82718-4 |
spellingShingle | Fundamentals and applications of colour engineering Intro -- Fundamentals and Applications of Colour Engineering -- Contents -- Series Editor's Foreword -- Preface -- Introductory Notes -- 1 Instruments and Methods for the Colour Measurements Required in Colour Engineering -- 1.1 Introduction -- 1.1.1 The Need for Colorimetry -- 1.1.2 The Principles of Colorimetry -- 1.1.3 Making the Transition from What We "See" to Quantifying How We "Match" a Colour -- 1.2 Visual Colorimetry -- 1.2.1 A Method to Uniquely Map the Colour of Lights and Objects -- 1.2.2 Development of the CIE Method of Visual Colorimetry -- 1.2.3 Applications of Visual Colorimetry -- 1.2.4 Disadvantages of Visual Colorimetry -- 1.3 Analogue Simulation of Visual Colorimetry -- 1.3.1 Replacing the Human Eye with an Optoelectronic Sensor -- 1.3.2 Substituting Coloured Filters to Approximate the CIE Colour-Matching Functions -- 1.3.3 Assessing the "Goodness of Fit" of a Set of Colorimeter Filters -- 1.3.4 Schematic Description of Analogue Filter Colorimeters -- 1.3.5 Disadvantages of Analogue Filter Colorimeters -- 1.4 Digital Simulation of Visual Colorimetry -- 1.4.1 Replacing the Analogue Filters with an Abridged Spectrometer -- 1.4.2 Assessing the "Goodness of Fit" of Abridged Spectrometers -- 1.4.3 Schematic Description of Digital Spectrocolorimeters -- 1.4.4 Advantages and Disadvantages of Digital Spectrocolorimeters -- 1.5 Selecting and Using Colorimeters and Spectrocolorimeters -- 1.5.1 Reading and Understanding Specifications and Technical Literature -- 1.5.2 Verifying Performance Specifications -- 1.5.3 Standards of Colour and Colour-difference -- 1.5.4 Sources of Error and Uncertainty in the Measurement of Reflectance, Transmittance and Radiance -- 1.6 Geometric Requirements for Colour Measurements -- 1.6.1 Colour Measurements from Self-Luminous Objects -- 1.6.2 Colour Measurements from Reflecting or Transmitting Objects 1.7 Conclusions and Expectations -- 1.7.1 Current CIE and ISO Activities in Colour and Colour-difference Measurements -- 1.7.2 Quality Management Systems and Colour Measurements -- References -- 2 Colorimetry and Colour Difference -- 2.1 Introduction -- 2.2 Colorimetry -- 2.3 Normalization -- 2.4 Colour Matching Functions -- 2.5 Illuminants -- 2.6 Data for Observers and Illuminants -- 2.7 Range and Interval -- 2.8 Calculation of Chromaticity -- 2.9 Calculation of CIE 1976 Uniform Colour Spaces -- 2.10 Inversion of CIELAB Equations -- 2.11 Colour Difference -- 2.12 Problems with Using UCS Colour Difference -- 2.13 Uniformity of the Components of Colour Difference -- 2.13.1 Chroma -- 2.13.2 Hue -- 2.13.3 Lightness -- 2.14 Viewing Conditions -- 2.15 Surface Characteristics -- 2.16 Acceptability of Colour Differences -- 2.17 Overcoming the Limitations of UCS Colour Difference with Advanced Colour Difference Metrics -- 2.18 CIE94 -- 2.19 CIEDE2000 -- 2.20 Progress on Colour Difference Metrics since CIEDE2000 -- 2.21 3D Colour Difference -- 2.22 Colour Difference in High Luminance Conditions -- 2.23 Colour Difference Formulas Based on Colour Appearance Models -- 2.24 Limitations in the Use of Advanced Colour Difference Metrics in Colour Imaging -- 2.25 Basis Conditions -- 2.25.1 Illuminant -- 2.25.2 Illuminance -- 2.25.3 Sample Separation -- 2.25.4 Sample Size and Image Structure -- 2.26 Colour Difference in Complex Images -- 2.27 Acceptability and Perceptibility -- 2.28 Large vs Small Differences -- 2.29 Deriving Colour Difference Tolerances -- 2.30 Sample Preparation -- 2.31 Psychophysical Experiments -- 2.31.1 Observer Variability and Experience -- 2.32 Colour Difference Judgements by Observers with a Colour Vision Deficiency -- 2.33 Calculating Colour Tolerances from Experimental Data 2.34 Calculation of Discrimination Ellipsoids and Tolerance Distributions -- 2.34.1 Calculation of Parametric Constants in Weightings Functions -- 2.35 Calculation of Acceptability Thresholds -- 2.36 Evaluating Colour Difference Metrics -- 2.37 Conclusion -- References -- 3 Fundamentals of Device Characterization -- 3.1 Introduction -- 3.1.1 Objectives -- 3.2 Characterization Methods -- 3.2.1 Test Charts -- 3.2.2 Calibration -- 3.2.2.1 Matching Aim Values -- 3.2.2.2 Optimizing Performance -- 3.2.2.3 Perceptual Uniformity of Device Values -- 3.2.2.4 Optimization for Machine Vision -- 3.2.3 Linearization -- 3.3 Numerical Models -- 3.3.1 Regression Methods Used in Characterization -- 3.3.1.1 First Order Model -- 3.3.1.2 Higher Order Models -- 3.3.1.3 Choosing the Polynomial Order -- 3.3.1.4 Spline Methods -- 3.3.1.5 Weighted Regression -- 3.3.2 Domain -- 3.3.3 Optimization -- 3.3.4 Noisy and Discontinuous Data -- 3.3.5 Machine Learning -- 3.4 Look-Up Tables with Interpolation -- 3.4.1 Packing -- 3.4.2 Extraction -- 3.4.3 Interpolation -- 3.4.4 LUT Implementation -- 3.4.4.1 LUT implementation in ICC profiles -- 3.5 Evaluating Accuracy -- Training and Test Data -- References -- 4 Characterization of Input Devices -- 4.1 Input Channels -- 4.2 Characterization Goals -- 4.3 Transform Encoding -- 4.4 Dynamic Range -- 4.5 Input Characterization Methods -- 4.5.1 Scanners -- 4.6 Targets -- 4.7 Modelling -- 4.7.1 Digital Cameras -- 4.8 Target-Based Characterization -- 4.9 Targets -- 4.10 Modelling -- 4.10.1 Spectral Sensitivity-based Methods -- 4.10.2 Machine Learning Methods -- 4.10.3 Spectral Characterization of Input Devices -- References -- 5 Color Processing for Digital Cameras -- 5.1 Introduction -- 5.2 Basics of a Camera Sensor -- 5.3 The Camera Pipeline -- 5.3.1 Defective Pixel Correction -- 5.3.2 Black-Level Correction and Normalization 5.3.3 Lens Shading Correction -- 5.3.4 Autofocus, Autoexposure, Auto White Balance -- 5.3.4.1 Autoexposure -- 5.3.4.2 Autofocus -- 5.3.5 White Balance and Auto White Balance -- 5.3.5.1 White Balance -- 5.3.5.2 Manual and Auto White Balance -- 5.3.6 Demosaicing -- 5.3.7 Noise Reduction -- 5.3.8 Color Space Transform to Device-Independent Color Space -- 5.3.9 Photo-Finishing/Rendering -- 5.3.9.1 General and Selective Color Manipulation -- 5.3.9.2 Global and Local Tone-Mapping -- 5.3.9.3 Sharpening/Noise and Grain -- 5.3.9.4 Image Resizing/Super-Resolution -- 5.3.10 Color Mapping to Final Image Encoding Color Space -- 5.3.11 Compression and Save to Storage -- 5.3.12 RAW Image Capture -- 5.4 Multi-Frame Processing -- 5.4.1 HDR Imaging -- 5.4.2 Low-Light/Night-Mode Imaging -- 5.5 Towards the Neural ISP -- 5.6 Concluding Remarks -- Acknowledgment -- References -- 6 Display Calibration -- 6.1 Introduction -- 6.2 From CRT to Contemporary Display Technologies -- 6.3 The Display Never Sleeps... Merging Television and Computer Display Standards -- 6.4 The Evolution of Display Calibration Capabilities -- 6.4.1 Gamut Mapping -- 6.4.2 Manual Calibration -- 6.4.3 One Dimensional Lookup -- 6.3.4 The Matrix Shaper Architecture -- 6.4.5 Single 3-Dimensional LUT -- 6.4.5.1 3DLUT Considerations -- 6.4.6 Hybrid Matrix Shaper Utilizing 3DLUT Followed by a 1DLUT -- 6.5 Measurement Set Requirements -- 6.5.1 Pattern Generation -- 6.5.2 How Many Measurements are Needed? -- 6.5.3 Methods to Mitigate Drift in Display Measurements -- 6.6 Calibration Validation Methodologies -- 6.6.1 Numerical Scales -- 6.6.2 Visual Evaluation Targets and Methods -- 6.7 Low Blue Light Developments -- 6.8 Conclusions -- References -- 7 Characterizing Hard Copy Printers -- 7.1 Introduction -- 7.2 Properties of Hard Copy Printers -- 7.3 Substrates and Inks -- 7.3.1 Fluorescent Whitening Agents 7.3.2 Inks -- 7.4 Colour Gamut -- 7.5 Halftoning -- 7.6 Mechanical Printing Systems -- 7.7 Printing Conditions -- 7.8 Digital Systems -- 7.9 RGB Printers -- 7.10 Test Charts -- 7.11 Printer Models -- 7.12 Block Dye Model -- 7.13 Physical Models -- 7.13.1 Density -- 7.13.2 Dot Area Models -- 7.13.2.1 Murray-Davies -- 7.13.2.2 Yule-Nielsen -- 7.13.2.3 Clapper-Yule -- 7.13.2.4 Additivity Failure -- 7.13.3 Neugebauer -- 7.13.3.1 Modified and Extended Neugebauer Equations -- 7.13.3.2 N-Modified Neugebauer Equations -- 7.13.4 Vector-Corrected Neugebauer Equations -- 7.13.4.1 Cellular Extensions -- 7.13.4.2 Spectral Extensions -- 7.13.4.3 Evaluation of Different Forms of the Neugebauer Equations -- 7.13.5 Colorant Models -- 7.13.5.1 Masking Equations -- 7.13.6 Beer-Bouguer -- 7.13.7 Kubelka-Munk -- 7.13.8 Extensions -- 7.14 Numerical Models and Look-up Tables -- 7.14.1 Black Printer -- 7.14.1.1 Spectral Grey-Component Replacement -- 7.14.1.2 Black Generation Algorithm -- 7.15 Inverting the Model -- 7.16 Multi-Colour and Spot Colour Characterization -- 7.17 Spectral Characterization -- 7.18 White Ink -- 7.19 Reducing the Frequency of Characterization -- 7.20 Conclusions -- References -- 8 Colour Encodings -- 8.1 Introduction -- 8.2 Colour Encoding Components -- 8.3 Colour Spaces -- 8.4 Device and Colour Space Encodings -- 8.5 Colorimetric Interpretation -- 8.6 Image State -- 8.7 Standard 3-Component Colour Space Encodings -- 8.8 Colour Gamut -- 8.8.1 Extended Colour Gamut -- 8.9 Precision and Range -- 8.9.1 High Dynamic Range -- 8.9.2 Negative Values -- 8.10 Luminance/Chrominance Encodings -- 8.11 Conversion to Colorimetry -- 8.12 Implementation Issues -- 8.13 File Formats -- References -- 9 Colour Gamut Communication -- 9.1 Introduction -- 9.1.1 Device Colour Gamut and the Usable Colour Gamut -- 9.1.2 Colour Space -- 9.1.3 Factors Affecting Colour Gamut MATLAB. MATLAB fast Color Flat panel displays Couleur Écrans plats color (perceived attribute) aat Color fast Flat panel displays fast |
title | Fundamentals and applications of colour engineering |
title_auth | Fundamentals and applications of colour engineering |
title_exact_search | Fundamentals and applications of colour engineering |
title_exact_search_txtP | Fundamentals and applications of colour engineering |
title_full | Fundamentals and applications of colour engineering edited by Phil Green |
title_fullStr | Fundamentals and applications of colour engineering edited by Phil Green |
title_full_unstemmed | Fundamentals and applications of colour engineering edited by Phil Green |
title_short | Fundamentals and applications of colour engineering |
title_sort | fundamentals and applications of colour engineering |
topic | MATLAB. MATLAB fast Color Flat panel displays Couleur Écrans plats color (perceived attribute) aat Color fast Flat panel displays fast |
topic_facet | MATLAB. MATLAB Color Flat panel displays Couleur Écrans plats color (perceived attribute) |
work_keys_str_mv | AT greenphil fundamentalsandapplicationsofcolourengineering |