Categorical data analysis and multilevel modeling using R:
R basics -- Review of basic statistics -- Logistic regression for binary data -- Proportional odds models for ordinal response variables -- Partial proportional odds models and generalized ordinal logistic regression models -- Other ordinal logistic regression models -- Multinomial logistic regressi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Los Angeles
SAGE
[2022]
|
Schlagworte: | |
Zusammenfassung: | R basics -- Review of basic statistics -- Logistic regression for binary data -- Proportional odds models for ordinal response variables -- Partial proportional odds models and generalized ordinal logistic regression models -- Other ordinal logistic regression models -- Multinomial logistic regression models -- Poisson regression models -- Negative binomial regression models and zero-inflated models -- Multilevel modeling for continuous response variables -- Multilevel modeling for binary response variables -- Multilevel modeling for ordinal response variables -- Multilevel modeling for count response variables -- Multilevel modeling for nominal response variables -- Bayesian generalized linear models -- Bayesian multilevel modeling of categorical response variables "Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains PowerPoint slides and solutions for the end-of-chapter exercises on the instructor site, and datasets and R commands used in the book on the student site |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxxiii, 708 Seiten |
ISBN: | 9781544324906 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049581953 | ||
003 | DE-604 | ||
005 | 20240312 | ||
007 | t | ||
008 | 240222s2022 |||| 00||| eng d | ||
020 | |a 9781544324906 |c paperback |9 9781544324906 | ||
035 | |a (OCoLC)1427322569 | ||
035 | |a (DE-599)KXP1796326623 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Liu, Xing |e Verfasser |4 aut | |
245 | 1 | 0 | |a Categorical data analysis and multilevel modeling using R |c Xing Liu |
264 | 1 | |a Los Angeles |b SAGE |c [2022] | |
300 | |a xxxiii, 708 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a R basics -- Review of basic statistics -- Logistic regression for binary data -- Proportional odds models for ordinal response variables -- Partial proportional odds models and generalized ordinal logistic regression models -- Other ordinal logistic regression models -- Multinomial logistic regression models -- Poisson regression models -- Negative binomial regression models and zero-inflated models -- Multilevel modeling for continuous response variables -- Multilevel modeling for binary response variables -- Multilevel modeling for ordinal response variables -- Multilevel modeling for count response variables -- Multilevel modeling for nominal response variables -- Bayesian generalized linear models -- Bayesian multilevel modeling of categorical response variables | |
520 | 3 | |a "Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains PowerPoint slides and solutions for the end-of-chapter exercises on the instructor site, and datasets and R commands used in the book on the student site | |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrebenenanalyse |0 (DE-588)1225816092 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mehrebenenanalyse |0 (DE-588)1225816092 |D s |
689 | 0 | 1 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034926875 |
Datensatz im Suchindex
_version_ | 1804186447804104704 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Liu, Xing |
author_facet | Liu, Xing |
author_role | aut |
author_sort | Liu, Xing |
author_variant | x l xl |
building | Verbundindex |
bvnumber | BV049581953 |
classification_rvk | SK 830 |
ctrlnum | (OCoLC)1427322569 (DE-599)KXP1796326623 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02612nam a2200361 c 4500</leader><controlfield tag="001">BV049581953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240312 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240222s2022 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781544324906</subfield><subfield code="c">paperback</subfield><subfield code="9">9781544324906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1427322569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1796326623</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Xing</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Categorical data analysis and multilevel modeling using R</subfield><subfield code="c">Xing Liu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Los Angeles</subfield><subfield code="b">SAGE</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxiii, 708 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">R basics -- Review of basic statistics -- Logistic regression for binary data -- Proportional odds models for ordinal response variables -- Partial proportional odds models and generalized ordinal logistic regression models -- Other ordinal logistic regression models -- Multinomial logistic regression models -- Poisson regression models -- Negative binomial regression models and zero-inflated models -- Multilevel modeling for continuous response variables -- Multilevel modeling for binary response variables -- Multilevel modeling for ordinal response variables -- Multilevel modeling for count response variables -- Multilevel modeling for nominal response variables -- Bayesian generalized linear models -- Bayesian multilevel modeling of categorical response variables</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains PowerPoint slides and solutions for the end-of-chapter exercises on the instructor site, and datasets and R commands used in the book on the student site</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrebenenanalyse</subfield><subfield code="0">(DE-588)1225816092</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrebenenanalyse</subfield><subfield code="0">(DE-588)1225816092</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034926875</subfield></datafield></record></collection> |
id | DE-604.BV049581953 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:32:05Z |
indexdate | 2024-07-10T10:11:17Z |
institution | BVB |
isbn | 9781544324906 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034926875 |
oclc_num | 1427322569 |
open_access_boolean | |
owner | DE-188 |
owner_facet | DE-188 |
physical | xxxiii, 708 Seiten |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | SAGE |
record_format | marc |
spelling | Liu, Xing Verfasser aut Categorical data analysis and multilevel modeling using R Xing Liu Los Angeles SAGE [2022] xxxiii, 708 Seiten txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index R basics -- Review of basic statistics -- Logistic regression for binary data -- Proportional odds models for ordinal response variables -- Partial proportional odds models and generalized ordinal logistic regression models -- Other ordinal logistic regression models -- Multinomial logistic regression models -- Poisson regression models -- Negative binomial regression models and zero-inflated models -- Multilevel modeling for continuous response variables -- Multilevel modeling for binary response variables -- Multilevel modeling for ordinal response variables -- Multilevel modeling for count response variables -- Multilevel modeling for nominal response variables -- Bayesian generalized linear models -- Bayesian multilevel modeling of categorical response variables "Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains PowerPoint slides and solutions for the end-of-chapter exercises on the instructor site, and datasets and R commands used in the book on the student site R Programm (DE-588)4705956-4 gnd rswk-swf Mehrebenenanalyse (DE-588)1225816092 gnd rswk-swf Mehrebenenanalyse (DE-588)1225816092 s R Programm (DE-588)4705956-4 s DE-604 |
spellingShingle | Liu, Xing Categorical data analysis and multilevel modeling using R R Programm (DE-588)4705956-4 gnd Mehrebenenanalyse (DE-588)1225816092 gnd |
subject_GND | (DE-588)4705956-4 (DE-588)1225816092 |
title | Categorical data analysis and multilevel modeling using R |
title_auth | Categorical data analysis and multilevel modeling using R |
title_exact_search | Categorical data analysis and multilevel modeling using R |
title_exact_search_txtP | Categorical data analysis and multilevel modeling using R |
title_full | Categorical data analysis and multilevel modeling using R Xing Liu |
title_fullStr | Categorical data analysis and multilevel modeling using R Xing Liu |
title_full_unstemmed | Categorical data analysis and multilevel modeling using R Xing Liu |
title_short | Categorical data analysis and multilevel modeling using R |
title_sort | categorical data analysis and multilevel modeling using r |
topic | R Programm (DE-588)4705956-4 gnd Mehrebenenanalyse (DE-588)1225816092 gnd |
topic_facet | R Programm Mehrebenenanalyse |
work_keys_str_mv | AT liuxing categoricaldataanalysisandmultilevelmodelingusingr |