Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Erlangen ; Nürnberg
2023
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | 1 Online-Ressource (41 Seiten) Illustrationen, Diagramme |
DOI: | 10.25593/open-fau-210 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049536360 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 240207s2023 gw |||| o||u| ||||||ger d | ||
015 | |a 24,O01 |2 dnb | ||
016 | 7 | |a 1314805002 |2 DE-101 | |
024 | 7 | |a 10.25593/open-fau-210 |2 doi | |
035 | |a (OCoLC)1422396814 | ||
035 | |a (DE-599)DNB1314805002 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a ger | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 2\p |a 610 |2 23sdnb | ||
084 | |8 1\p |a 616.994 |2 23ksdnb | ||
100 | 1 | |a Geyer, Christoph |d 1988- |e Verfasser |0 (DE-588)1318555280 |4 aut | |
245 | 1 | 0 | |a Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline |c vorgelegt von Christoph Geyer |
264 | 1 | |a Erlangen ; Nürnberg |c 2023 | |
300 | |a 1 Online-Ressource (41 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Alexander-Universität Erlangen-Nürnberg |d 2023 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |8 4\p |a Pipeline |0 (DE-588)4125984-1 |2 gnd |
650 | 0 | 7 | |8 5\p |a Deep learning |0 (DE-588)1135597375 |2 gnd |
650 | 0 | 7 | |8 6\p |a Urothelkrebs |0 (DE-588)4187259-9 |2 gnd |
650 | 0 | 7 | |8 7\p |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |
653 | |a Deep Learning | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
856 | 4 | 0 | |u https://doi.org/10.25593/open-fau-210 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://open.fau.de/handle/openfau/30258 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1314805002/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034881860 | ||
883 | 0 | |8 1\p |a emakn |c 1,00000 |d 20231230 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,81511 |d 20231230 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20231229 |q DE-101 |u https://d-nb.info/provenance/plan#npi | |
883 | 0 | |8 4\p |a emagnd |c 0,14105 |d 20231230 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 5\p |a emagnd |c 0,14062 |d 20231230 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 6\p |a emagnd |c 0,07357 |d 20231230 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 7\p |a emagnd |c 0,07166 |d 20231230 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd |
Datensatz im Suchindex
_version_ | 1804186370029125632 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Geyer, Christoph 1988- |
author_GND | (DE-588)1318555280 |
author_facet | Geyer, Christoph 1988- |
author_role | aut |
author_sort | Geyer, Christoph 1988- |
author_variant | c g cg |
building | Verbundindex |
bvnumber | BV049536360 |
collection | ebook |
ctrlnum | (OCoLC)1422396814 (DE-599)DNB1314805002 |
doi_str_mv | 10.25593/open-fau-210 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02719nmm a2200553zc 4500</leader><controlfield tag="001">BV049536360</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240207s2023 gw |||| o||u| ||||||ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">24,O01</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1314805002</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.25593/open-fau-210</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1422396814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1314805002</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">610</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">616.994</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geyer, Christoph</subfield><subfield code="d">1988-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1318555280</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline</subfield><subfield code="c">vorgelegt von Christoph Geyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (41 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="d">2023</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Pipeline</subfield><subfield code="0">(DE-588)4125984-1</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">5\p</subfield><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">6\p</subfield><subfield code="a">Urothelkrebs</subfield><subfield code="0">(DE-588)4187259-9</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">7\p</subfield><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.25593/open-fau-210</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://open.fau.de/handle/openfau/30258</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1314805002/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034881860</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">1,00000</subfield><subfield code="d">20231230</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,81511</subfield><subfield code="d">20231230</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20231229</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,14105</subfield><subfield code="d">20231230</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,14062</subfield><subfield code="d">20231230</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,07357</subfield><subfield code="d">20231230</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,07166</subfield><subfield code="d">20231230</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049536360 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:27:49Z |
indexdate | 2024-07-10T10:10:03Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034881860 |
oclc_num | 1422396814 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 1 Online-Ressource (41 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
record_format | marc |
spelling | Geyer, Christoph 1988- Verfasser (DE-588)1318555280 aut Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline vorgelegt von Christoph Geyer Erlangen ; Nürnberg 2023 1 Online-Ressource (41 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Friedrich-Alexander-Universität Erlangen-Nürnberg 2023 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager 4\p Pipeline (DE-588)4125984-1 gnd 5\p Deep learning (DE-588)1135597375 gnd 6\p Urothelkrebs (DE-588)4187259-9 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd Deep Learning (DE-588)4113937-9 Hochschulschrift gnd-content https://doi.org/10.25593/open-fau-210 Resolving-System kostenfrei Volltext https://open.fau.de/handle/openfau/30258 Verlag kostenfrei Volltext https://d-nb.info/1314805002/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext 1\p emakn 1,00000 20231230 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,81511 20231230 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20231229 DE-101 https://d-nb.info/provenance/plan#npi 4\p emagnd 0,14105 20231230 DE-101 https://d-nb.info/provenance/plan#emagnd 5\p emagnd 0,14062 20231230 DE-101 https://d-nb.info/provenance/plan#emagnd 6\p emagnd 0,07357 20231230 DE-101 https://d-nb.info/provenance/plan#emagnd 7\p emagnd 0,07166 20231230 DE-101 https://d-nb.info/provenance/plan#emagnd |
spellingShingle | Geyer, Christoph 1988- Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline 4\p Pipeline (DE-588)4125984-1 gnd 5\p Deep learning (DE-588)1135597375 gnd 6\p Urothelkrebs (DE-588)4187259-9 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4125984-1 (DE-588)1135597375 (DE-588)4187259-9 (DE-588)4226127-2 (DE-588)4113937-9 |
title | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline |
title_auth | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline |
title_exact_search | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline |
title_exact_search_txtP | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline |
title_full | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline vorgelegt von Christoph Geyer |
title_fullStr | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline vorgelegt von Christoph Geyer |
title_full_unstemmed | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline vorgelegt von Christoph Geyer |
title_short | Deep Learning Studie zur Hämatoxylin-Eosin histomorphologischen Klassifikation von Urothelkarzinomentitäten mittels Whole-Slide Image Managing Pipeline |
title_sort | deep learning studie zur hamatoxylin eosin histomorphologischen klassifikation von urothelkarzinomentitaten mittels whole slide image managing pipeline |
topic | 4\p Pipeline (DE-588)4125984-1 gnd 5\p Deep learning (DE-588)1135597375 gnd 6\p Urothelkrebs (DE-588)4187259-9 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | Pipeline Deep learning Urothelkrebs Neuronales Netz Hochschulschrift |
url | https://doi.org/10.25593/open-fau-210 https://open.fau.de/handle/openfau/30258 https://d-nb.info/1314805002/34 |
work_keys_str_mv | AT geyerchristoph deeplearningstudiezurhamatoxylineosinhistomorphologischenklassifikationvonurothelkarzinomentitatenmittelswholeslideimagemanagingpipeline |