Machine learning for healthcare systems: foundations and applications
This book provides various insights into machine learning techniques in healthcare system data and its analysis
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Gistrup, Denmark
River Publishers
[2023]
|
Schriftenreihe: | River Publishers Series in Computing and Information Science and Technology
|
Schlagworte: | |
Online-Zugang: | FHI01 Volltext https://public.ebookcentral.proquest.com/choice/PublicFullRecord.aspx?p=7275994 Taylor & Francis |
Zusammenfassung: | This book provides various insights into machine learning techniques in healthcare system data and its analysis |
Beschreibung: | Description based upon print version of record |
Beschreibung: | 1 Online-Ressource (xxvii, 222 Seiten) Diagramme |
ISBN: | 9781000959994 1000959996 8770228116 9788770228114 9781000959987 1000959988 9788770228107 8770228108 9781003438816 1003438814 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049498097 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240112s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781000959994 |9 9781000959994 | ||
020 | |a 1000959996 |9 1000959996 | ||
020 | |a 8770228116 |9 8770228116 | ||
020 | |a 9788770228114 |9 9788770228114 | ||
020 | |a 9781000959987 |9 9781000959987 | ||
020 | |a 1000959988 |9 1000959988 | ||
020 | |a 9788770228107 |9 9788770228107 | ||
020 | |a 8770228108 |9 8770228108 | ||
020 | |a 9781003438816 |9 9781003438816 | ||
020 | |a 1003438814 |9 1003438814 | ||
024 | 7 | |a 10.1201/9781003438816 |2 doi | |
035 | |a (OCoLC)1418694093 | ||
035 | |a (DE-599)BVBBV049498097 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
245 | 1 | 0 | |a Machine learning for healthcare systems |b foundations and applications |
264 | 1 | |a Gistrup, Denmark |b River Publishers |c [2023] | |
300 | |a 1 Online-Ressource (xxvii, 222 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a River Publishers Series in Computing and Information Science and Technology | |
500 | |a Description based upon print version of record | ||
505 | 8 | |a Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1: Investigation on Improving the Performance of Class-imbalanced Medical Health Datasets -- 1.1: Introduction -- 1.2: Problem Formulation -- 1.3: Techniques to Handle Imbalanced Datasets -- 1.3.1: Random undersampling (RUS) -- 1.3.2: Random oversampling (RUS) -- 1.3.3: Synthetic minority oversampling technique (SMOTE) -- 1.4: Classification Models -- 1.4.1: Naive Bayes | |
505 | 8 | |a 1.4.2: k-Nearest neighbor classifier -- 1.4.3: Decision tree classifier -- 1.4.4: Random forest -- 1.5: Dataset Collection -- 1.5.1: Heart failure clinical records dataset -- 1.5.2: Diabetes dataset -- 1.6: Experimental Results and Discussion -- 1.6.1: Heart failure clinical records dataset -- 1.6.2: Diabetes dataset -- 1.7: Conclusion -- References -- Chapter 2: Improving Heart Disease Diagnosis using Modified Dynamic Adaptive PSO (MDAPSO) -- 2.1: Introduction -- 2.2: Background and Related Work -- 2.2.1: PSO modification -- 2.2.2: Feature selection -- 2.2.3: Classification and clustering | |
505 | 8 | |a 2.3: Proposed Approach -- 2.3.1: PSO algorithm -- 2.3.2: Inertia weight -- 2.3.3: Modified dynamic adaptive particle swarm optimization (MDAPSO) -- 2.4: Experimental Setup and Results -- 2.4.1: Dataset -- 2.4.2: Performance metrics -- 2.4.3: Result -- 2.5: Conclusion -- References -- Chapter 3: Efficient Diagnosis and ICU Patient Monitoring Model -- 3.1: Introduction -- 3.2: Main Text -- 3.2.1: Disease prediction -- 3.2.2: Hospital monitoring system -- 3.3: Experimentation -- 3.3.1: The threshold for the Levenshtein distance -- 3.3.2: The threshold for heart rate and respiratory rate | |
505 | 8 | |a 3.4: Conclusion -- References -- Chapter 4: Application of Machine Learning in Chest X-ray Images -- 4.1: Introduction -- 4.2: Chest X-ray Images -- 4.3: Literature Review -- 4.4: Application of Machine Learning in Chest X-ray Images -- 4.4.1: Clustering -- 4.4.2: Regression -- 4.4.3: Segmentation -- 4.4.4: Classification -- 4.5: Case Study: Lung Chest X-ray Images -- 4.5.1: Methodology -- 4.5.2: JSRT dataset -- 4.5.3: Image pre-processing -- 4.5.4: CNN -- 4.6: Conclusion -- 4.7: Future Study -- References -- Chapter 5: Integrated Solution for Chest X-ray Image Classification -- 5.1: Introduction | |
505 | 8 | |a 5.2: Related Work -- 5.3: The Method -- 5.3.1: Feature extraction -- 5.3.2: Feature reduction -- 5.3.3: Classification -- 5.3.4: Algorithm -- 5.4: Experimental Results -- 5.5: Discussion and Conclusions -- References -- Chapter 6: Predicting Genetic Mutations Among Cancer Patients by Incorporating LSTM with Word Embedding Techniques -- 6.1: Introduction -- 6.2: Related Work -- 6.2.1: Basic feature engineering -- 6.2.2: Classification method -- 6.3: Data Overview -- 6.3.1: Dataset structure -- 6.3.2: Data pre-processing -- 6.3.3: Most frequent genes and class -- 6.3.4: Most frequent variation and class | |
520 | 3 | |a This book provides various insights into machine learning techniques in healthcare system data and its analysis | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Artificial intelligence / Medical applications | |
653 | 0 | |a Medical informatics | |
653 | 0 | |a Machine Learning | |
653 | 0 | |a Apprentissage automatique | |
653 | 0 | |a Intelligence artificielle en médecine | |
653 | 0 | |a Médecine / Informatique | |
653 | 0 | |a COMPUTERS / Information Technology | |
653 | 0 | |a Artificial intelligence / Medical applications | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Medical informatics | |
700 | 1 | |a Chandran, C. Karthik |e Sonstige |4 oth | |
700 | 1 | |a Rajalakshmi, M. |e Sonstige |4 oth | |
700 | 1 | |a Mohanty, Sachi Nandan |d 1981- |e Sonstige |0 (DE-588)116301849X |4 oth | |
700 | 1 | |a Chowdhury, Subrata |e Sonstige |4 oth | |
776 | 0 | 8 | |i Print version |a Chandran, C. Karthik |t Machine Learning for Healthcare Systems |d Gistrup, Denmark: River Publishers,c2023 |z 9788770228114 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/book/10089364 |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://public.ebookcentral.proquest.com/choice/PublicFullRecord.aspx?p=7275994 |
856 | 4 | 0 | |u https://www.taylorfrancis.com/books/9781003438816 |3 Taylor & Francis |
912 | |a ZDB-37-RPEB | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034843285 | ||
966 | e | |u https://ieeexplore.ieee.org/book/10089364 |l FHI01 |p ZDB-37-RPEB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186302485102592 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)116301849X |
building | Verbundindex |
bvnumber | BV049498097 |
collection | ZDB-37-RPEB |
contents | Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1: Investigation on Improving the Performance of Class-imbalanced Medical Health Datasets -- 1.1: Introduction -- 1.2: Problem Formulation -- 1.3: Techniques to Handle Imbalanced Datasets -- 1.3.1: Random undersampling (RUS) -- 1.3.2: Random oversampling (RUS) -- 1.3.3: Synthetic minority oversampling technique (SMOTE) -- 1.4: Classification Models -- 1.4.1: Naive Bayes 1.4.2: k-Nearest neighbor classifier -- 1.4.3: Decision tree classifier -- 1.4.4: Random forest -- 1.5: Dataset Collection -- 1.5.1: Heart failure clinical records dataset -- 1.5.2: Diabetes dataset -- 1.6: Experimental Results and Discussion -- 1.6.1: Heart failure clinical records dataset -- 1.6.2: Diabetes dataset -- 1.7: Conclusion -- References -- Chapter 2: Improving Heart Disease Diagnosis using Modified Dynamic Adaptive PSO (MDAPSO) -- 2.1: Introduction -- 2.2: Background and Related Work -- 2.2.1: PSO modification -- 2.2.2: Feature selection -- 2.2.3: Classification and clustering 2.3: Proposed Approach -- 2.3.1: PSO algorithm -- 2.3.2: Inertia weight -- 2.3.3: Modified dynamic adaptive particle swarm optimization (MDAPSO) -- 2.4: Experimental Setup and Results -- 2.4.1: Dataset -- 2.4.2: Performance metrics -- 2.4.3: Result -- 2.5: Conclusion -- References -- Chapter 3: Efficient Diagnosis and ICU Patient Monitoring Model -- 3.1: Introduction -- 3.2: Main Text -- 3.2.1: Disease prediction -- 3.2.2: Hospital monitoring system -- 3.3: Experimentation -- 3.3.1: The threshold for the Levenshtein distance -- 3.3.2: The threshold for heart rate and respiratory rate 3.4: Conclusion -- References -- Chapter 4: Application of Machine Learning in Chest X-ray Images -- 4.1: Introduction -- 4.2: Chest X-ray Images -- 4.3: Literature Review -- 4.4: Application of Machine Learning in Chest X-ray Images -- 4.4.1: Clustering -- 4.4.2: Regression -- 4.4.3: Segmentation -- 4.4.4: Classification -- 4.5: Case Study: Lung Chest X-ray Images -- 4.5.1: Methodology -- 4.5.2: JSRT dataset -- 4.5.3: Image pre-processing -- 4.5.4: CNN -- 4.6: Conclusion -- 4.7: Future Study -- References -- Chapter 5: Integrated Solution for Chest X-ray Image Classification -- 5.1: Introduction 5.2: Related Work -- 5.3: The Method -- 5.3.1: Feature extraction -- 5.3.2: Feature reduction -- 5.3.3: Classification -- 5.3.4: Algorithm -- 5.4: Experimental Results -- 5.5: Discussion and Conclusions -- References -- Chapter 6: Predicting Genetic Mutations Among Cancer Patients by Incorporating LSTM with Word Embedding Techniques -- 6.1: Introduction -- 6.2: Related Work -- 6.2.1: Basic feature engineering -- 6.2.2: Classification method -- 6.3: Data Overview -- 6.3.1: Dataset structure -- 6.3.2: Data pre-processing -- 6.3.3: Most frequent genes and class -- 6.3.4: Most frequent variation and class |
ctrlnum | (OCoLC)1418694093 (DE-599)BVBBV049498097 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05758nmm a2200709 c 4500</leader><controlfield tag="001">BV049498097</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240112s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000959994</subfield><subfield code="9">9781000959994</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000959996</subfield><subfield code="9">1000959996</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8770228116</subfield><subfield code="9">8770228116</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788770228114</subfield><subfield code="9">9788770228114</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000959987</subfield><subfield code="9">9781000959987</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000959988</subfield><subfield code="9">1000959988</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788770228107</subfield><subfield code="9">9788770228107</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8770228108</subfield><subfield code="9">8770228108</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003438816</subfield><subfield code="9">9781003438816</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1003438814</subfield><subfield code="9">1003438814</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003438816</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1418694093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049498097</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for healthcare systems</subfield><subfield code="b">foundations and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Gistrup, Denmark</subfield><subfield code="b">River Publishers</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvii, 222 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">River Publishers Series in Computing and Information Science and Technology</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1: Investigation on Improving the Performance of Class-imbalanced Medical Health Datasets -- 1.1: Introduction -- 1.2: Problem Formulation -- 1.3: Techniques to Handle Imbalanced Datasets -- 1.3.1: Random undersampling (RUS) -- 1.3.2: Random oversampling (RUS) -- 1.3.3: Synthetic minority oversampling technique (SMOTE) -- 1.4: Classification Models -- 1.4.1: Naive Bayes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4.2: k-Nearest neighbor classifier -- 1.4.3: Decision tree classifier -- 1.4.4: Random forest -- 1.5: Dataset Collection -- 1.5.1: Heart failure clinical records dataset -- 1.5.2: Diabetes dataset -- 1.6: Experimental Results and Discussion -- 1.6.1: Heart failure clinical records dataset -- 1.6.2: Diabetes dataset -- 1.7: Conclusion -- References -- Chapter 2: Improving Heart Disease Diagnosis using Modified Dynamic Adaptive PSO (MDAPSO) -- 2.1: Introduction -- 2.2: Background and Related Work -- 2.2.1: PSO modification -- 2.2.2: Feature selection -- 2.2.3: Classification and clustering</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3: Proposed Approach -- 2.3.1: PSO algorithm -- 2.3.2: Inertia weight -- 2.3.3: Modified dynamic adaptive particle swarm optimization (MDAPSO) -- 2.4: Experimental Setup and Results -- 2.4.1: Dataset -- 2.4.2: Performance metrics -- 2.4.3: Result -- 2.5: Conclusion -- References -- Chapter 3: Efficient Diagnosis and ICU Patient Monitoring Model -- 3.1: Introduction -- 3.2: Main Text -- 3.2.1: Disease prediction -- 3.2.2: Hospital monitoring system -- 3.3: Experimentation -- 3.3.1: The threshold for the Levenshtein distance -- 3.3.2: The threshold for heart rate and respiratory rate</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4: Conclusion -- References -- Chapter 4: Application of Machine Learning in Chest X-ray Images -- 4.1: Introduction -- 4.2: Chest X-ray Images -- 4.3: Literature Review -- 4.4: Application of Machine Learning in Chest X-ray Images -- 4.4.1: Clustering -- 4.4.2: Regression -- 4.4.3: Segmentation -- 4.4.4: Classification -- 4.5: Case Study: Lung Chest X-ray Images -- 4.5.1: Methodology -- 4.5.2: JSRT dataset -- 4.5.3: Image pre-processing -- 4.5.4: CNN -- 4.6: Conclusion -- 4.7: Future Study -- References -- Chapter 5: Integrated Solution for Chest X-ray Image Classification -- 5.1: Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2: Related Work -- 5.3: The Method -- 5.3.1: Feature extraction -- 5.3.2: Feature reduction -- 5.3.3: Classification -- 5.3.4: Algorithm -- 5.4: Experimental Results -- 5.5: Discussion and Conclusions -- References -- Chapter 6: Predicting Genetic Mutations Among Cancer Patients by Incorporating LSTM with Word Embedding Techniques -- 6.1: Introduction -- 6.2: Related Work -- 6.2.1: Basic feature engineering -- 6.2.2: Classification method -- 6.3: Data Overview -- 6.3.1: Dataset structure -- 6.3.2: Data pre-processing -- 6.3.3: Most frequent genes and class -- 6.3.4: Most frequent variation and class</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book provides various insights into machine learning techniques in healthcare system data and its analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence / Medical applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Intelligence artificielle en médecine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Médecine / Informatique</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Information Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence / Medical applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical informatics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chandran, C. Karthik</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajalakshmi, M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohanty, Sachi Nandan</subfield><subfield code="d">1981-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)116301849X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhury, Subrata</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version</subfield><subfield code="a">Chandran, C. Karthik</subfield><subfield code="t">Machine Learning for Healthcare Systems</subfield><subfield code="d">Gistrup, Denmark: River Publishers,c2023</subfield><subfield code="z">9788770228114</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/10089364</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://public.ebookcentral.proquest.com/choice/PublicFullRecord.aspx?p=7275994</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.taylorfrancis.com/books/9781003438816</subfield><subfield code="3">Taylor & Francis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-RPEB</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034843285</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/book/10089364</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-37-RPEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049498097 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:20:49Z |
indexdate | 2024-07-10T10:08:58Z |
institution | BVB |
isbn | 9781000959994 1000959996 8770228116 9788770228114 9781000959987 1000959988 9788770228107 8770228108 9781003438816 1003438814 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034843285 |
oclc_num | 1418694093 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (xxvii, 222 Seiten) Diagramme |
psigel | ZDB-37-RPEB |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | River Publishers |
record_format | marc |
series2 | River Publishers Series in Computing and Information Science and Technology |
spelling | Machine learning for healthcare systems foundations and applications Gistrup, Denmark River Publishers [2023] 1 Online-Ressource (xxvii, 222 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier River Publishers Series in Computing and Information Science and Technology Description based upon print version of record Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1: Investigation on Improving the Performance of Class-imbalanced Medical Health Datasets -- 1.1: Introduction -- 1.2: Problem Formulation -- 1.3: Techniques to Handle Imbalanced Datasets -- 1.3.1: Random undersampling (RUS) -- 1.3.2: Random oversampling (RUS) -- 1.3.3: Synthetic minority oversampling technique (SMOTE) -- 1.4: Classification Models -- 1.4.1: Naive Bayes 1.4.2: k-Nearest neighbor classifier -- 1.4.3: Decision tree classifier -- 1.4.4: Random forest -- 1.5: Dataset Collection -- 1.5.1: Heart failure clinical records dataset -- 1.5.2: Diabetes dataset -- 1.6: Experimental Results and Discussion -- 1.6.1: Heart failure clinical records dataset -- 1.6.2: Diabetes dataset -- 1.7: Conclusion -- References -- Chapter 2: Improving Heart Disease Diagnosis using Modified Dynamic Adaptive PSO (MDAPSO) -- 2.1: Introduction -- 2.2: Background and Related Work -- 2.2.1: PSO modification -- 2.2.2: Feature selection -- 2.2.3: Classification and clustering 2.3: Proposed Approach -- 2.3.1: PSO algorithm -- 2.3.2: Inertia weight -- 2.3.3: Modified dynamic adaptive particle swarm optimization (MDAPSO) -- 2.4: Experimental Setup and Results -- 2.4.1: Dataset -- 2.4.2: Performance metrics -- 2.4.3: Result -- 2.5: Conclusion -- References -- Chapter 3: Efficient Diagnosis and ICU Patient Monitoring Model -- 3.1: Introduction -- 3.2: Main Text -- 3.2.1: Disease prediction -- 3.2.2: Hospital monitoring system -- 3.3: Experimentation -- 3.3.1: The threshold for the Levenshtein distance -- 3.3.2: The threshold for heart rate and respiratory rate 3.4: Conclusion -- References -- Chapter 4: Application of Machine Learning in Chest X-ray Images -- 4.1: Introduction -- 4.2: Chest X-ray Images -- 4.3: Literature Review -- 4.4: Application of Machine Learning in Chest X-ray Images -- 4.4.1: Clustering -- 4.4.2: Regression -- 4.4.3: Segmentation -- 4.4.4: Classification -- 4.5: Case Study: Lung Chest X-ray Images -- 4.5.1: Methodology -- 4.5.2: JSRT dataset -- 4.5.3: Image pre-processing -- 4.5.4: CNN -- 4.6: Conclusion -- 4.7: Future Study -- References -- Chapter 5: Integrated Solution for Chest X-ray Image Classification -- 5.1: Introduction 5.2: Related Work -- 5.3: The Method -- 5.3.1: Feature extraction -- 5.3.2: Feature reduction -- 5.3.3: Classification -- 5.3.4: Algorithm -- 5.4: Experimental Results -- 5.5: Discussion and Conclusions -- References -- Chapter 6: Predicting Genetic Mutations Among Cancer Patients by Incorporating LSTM with Word Embedding Techniques -- 6.1: Introduction -- 6.2: Related Work -- 6.2.1: Basic feature engineering -- 6.2.2: Classification method -- 6.3: Data Overview -- 6.3.1: Dataset structure -- 6.3.2: Data pre-processing -- 6.3.3: Most frequent genes and class -- 6.3.4: Most frequent variation and class This book provides various insights into machine learning techniques in healthcare system data and its analysis Machine learning Artificial intelligence / Medical applications Medical informatics Machine Learning Apprentissage automatique Intelligence artificielle en médecine Médecine / Informatique COMPUTERS / Information Technology Chandran, C. Karthik Sonstige oth Rajalakshmi, M. Sonstige oth Mohanty, Sachi Nandan 1981- Sonstige (DE-588)116301849X oth Chowdhury, Subrata Sonstige oth Print version Chandran, C. Karthik Machine Learning for Healthcare Systems Gistrup, Denmark: River Publishers,c2023 9788770228114 https://ieeexplore.ieee.org/book/10089364 Aggregator URL des Erstveröffentlichers Volltext https://public.ebookcentral.proquest.com/choice/PublicFullRecord.aspx?p=7275994 https://www.taylorfrancis.com/books/9781003438816 Taylor & Francis |
spellingShingle | Machine learning for healthcare systems foundations and applications Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1: Investigation on Improving the Performance of Class-imbalanced Medical Health Datasets -- 1.1: Introduction -- 1.2: Problem Formulation -- 1.3: Techniques to Handle Imbalanced Datasets -- 1.3.1: Random undersampling (RUS) -- 1.3.2: Random oversampling (RUS) -- 1.3.3: Synthetic minority oversampling technique (SMOTE) -- 1.4: Classification Models -- 1.4.1: Naive Bayes 1.4.2: k-Nearest neighbor classifier -- 1.4.3: Decision tree classifier -- 1.4.4: Random forest -- 1.5: Dataset Collection -- 1.5.1: Heart failure clinical records dataset -- 1.5.2: Diabetes dataset -- 1.6: Experimental Results and Discussion -- 1.6.1: Heart failure clinical records dataset -- 1.6.2: Diabetes dataset -- 1.7: Conclusion -- References -- Chapter 2: Improving Heart Disease Diagnosis using Modified Dynamic Adaptive PSO (MDAPSO) -- 2.1: Introduction -- 2.2: Background and Related Work -- 2.2.1: PSO modification -- 2.2.2: Feature selection -- 2.2.3: Classification and clustering 2.3: Proposed Approach -- 2.3.1: PSO algorithm -- 2.3.2: Inertia weight -- 2.3.3: Modified dynamic adaptive particle swarm optimization (MDAPSO) -- 2.4: Experimental Setup and Results -- 2.4.1: Dataset -- 2.4.2: Performance metrics -- 2.4.3: Result -- 2.5: Conclusion -- References -- Chapter 3: Efficient Diagnosis and ICU Patient Monitoring Model -- 3.1: Introduction -- 3.2: Main Text -- 3.2.1: Disease prediction -- 3.2.2: Hospital monitoring system -- 3.3: Experimentation -- 3.3.1: The threshold for the Levenshtein distance -- 3.3.2: The threshold for heart rate and respiratory rate 3.4: Conclusion -- References -- Chapter 4: Application of Machine Learning in Chest X-ray Images -- 4.1: Introduction -- 4.2: Chest X-ray Images -- 4.3: Literature Review -- 4.4: Application of Machine Learning in Chest X-ray Images -- 4.4.1: Clustering -- 4.4.2: Regression -- 4.4.3: Segmentation -- 4.4.4: Classification -- 4.5: Case Study: Lung Chest X-ray Images -- 4.5.1: Methodology -- 4.5.2: JSRT dataset -- 4.5.3: Image pre-processing -- 4.5.4: CNN -- 4.6: Conclusion -- 4.7: Future Study -- References -- Chapter 5: Integrated Solution for Chest X-ray Image Classification -- 5.1: Introduction 5.2: Related Work -- 5.3: The Method -- 5.3.1: Feature extraction -- 5.3.2: Feature reduction -- 5.3.3: Classification -- 5.3.4: Algorithm -- 5.4: Experimental Results -- 5.5: Discussion and Conclusions -- References -- Chapter 6: Predicting Genetic Mutations Among Cancer Patients by Incorporating LSTM with Word Embedding Techniques -- 6.1: Introduction -- 6.2: Related Work -- 6.2.1: Basic feature engineering -- 6.2.2: Classification method -- 6.3: Data Overview -- 6.3.1: Dataset structure -- 6.3.2: Data pre-processing -- 6.3.3: Most frequent genes and class -- 6.3.4: Most frequent variation and class |
title | Machine learning for healthcare systems foundations and applications |
title_auth | Machine learning for healthcare systems foundations and applications |
title_exact_search | Machine learning for healthcare systems foundations and applications |
title_exact_search_txtP | Machine learning for healthcare systems foundations and applications |
title_full | Machine learning for healthcare systems foundations and applications |
title_fullStr | Machine learning for healthcare systems foundations and applications |
title_full_unstemmed | Machine learning for healthcare systems foundations and applications |
title_short | Machine learning for healthcare systems |
title_sort | machine learning for healthcare systems foundations and applications |
title_sub | foundations and applications |
url | https://ieeexplore.ieee.org/book/10089364 https://public.ebookcentral.proquest.com/choice/PublicFullRecord.aspx?p=7275994 https://www.taylorfrancis.com/books/9781003438816 |
work_keys_str_mv | AT chandranckarthik machinelearningforhealthcaresystemsfoundationsandapplications AT rajalakshmim machinelearningforhealthcaresystemsfoundationsandapplications AT mohantysachinandan machinelearningforhealthcaresystemsfoundationsandapplications AT chowdhurysubrata machinelearningforhealthcaresystemsfoundationsandapplications |