Partial differential equations:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Birkhäuser
[2023]
|
Ausgabe: | Third edition |
Schriftenreihe: | Cornerstones
|
Schlagworte: | |
Beschreibung: | This graduate textbook provides a self-contained introduction to the classical theory of partial differential equations (PDEs). Through its careful selection of topics and engaging tone, readers will also learn how PDEs connect to cutting-edge research and the modeling of physical phenomena. The scope of the Third Edition greatly expands on that of the previous editions by including five new chapters covering additional PDE topics relevant for current areas of active research. This includes coverage of linear parabolic equations with measurable coefficients, parabolic DeGiorgi classes, Navier-Stokes equations, and more. The "Problems and Complements" sections have also been updated to feature new exercises, examples, and hints toward solutions, making this a timely resource for students.Partial Differential Equations: Third Edition is ideal for graduate students interested in exploring the theory of PDEs and how they connect to contemporary research. It can also serve as a useful tool for more experienced readers who are looking for a comprehensive reference Preliminaries.- Quasi-Linear Equations and the Cauchy-Kowalewski Theorem.- The Laplace Equation.- Boundary Value Problems by Double-Layer Potentials.- Integral Equations and Eigenvalue Problems.- The Heat Equation.- The Wave Equation.- Quasi-Linear Equations of First Order.- Linear Elliptic Equations with Measurable Coefficients.- Elliptic De Giorgi Classes.- Navier-Stokes Equations.- Quasi-Linear Hyperbolic First Order Systems.- Non-Linear Equations of the First Order |
Beschreibung: | xxx, 748 Seiten Illustrationen 1328 gr |
ISBN: | 9783031466175 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049459418 | ||
003 | DE-604 | ||
005 | 20240201 | ||
007 | t | ||
008 | 231208s2023 a||| |||| 00||| eng d | ||
020 | |a 9783031466175 |9 978-3-031-46617-5 | ||
024 | 3 | |a 9783031466175 | |
035 | |a (OCoLC)1420789900 | ||
035 | |a (DE-599)BVBBV049459418 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a DiBenedetto, Emmanuele |d 1947-2021 |e Verfasser |0 (DE-588)139140034 |4 aut | |
245 | 1 | 0 | |a Partial differential equations |c Emmanuele DiBenedetto, Ugo Gianazza |
250 | |a Third edition | ||
264 | 1 | |a Cham, Switzerland |b Birkhäuser |c [2023] | |
300 | |a xxx, 748 Seiten |b Illustrationen |c 1328 gr | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cornerstones | |
500 | |a This graduate textbook provides a self-contained introduction to the classical theory of partial differential equations (PDEs). Through its careful selection of topics and engaging tone, readers will also learn how PDEs connect to cutting-edge research and the modeling of physical phenomena. The scope of the Third Edition greatly expands on that of the previous editions by including five new chapters covering additional PDE topics relevant for current areas of active research. This includes coverage of linear parabolic equations with measurable coefficients, parabolic DeGiorgi classes, Navier-Stokes equations, and more. The "Problems and Complements" sections have also been updated to feature new exercises, examples, and hints toward solutions, making this a timely resource for students.Partial Differential Equations: Third Edition is ideal for graduate students interested in exploring the theory of PDEs and how they connect to contemporary research. It can also serve as a useful tool for more experienced readers who are looking for a comprehensive reference | ||
500 | |a Preliminaries.- Quasi-Linear Equations and the Cauchy-Kowalewski Theorem.- The Laplace Equation.- Boundary Value Problems by Double-Layer Potentials.- Integral Equations and Eigenvalue Problems.- The Heat Equation.- The Wave Equation.- Quasi-Linear Equations of First Order.- Linear Elliptic Equations with Measurable Coefficients.- Elliptic De Giorgi Classes.- Navier-Stokes Equations.- Quasi-Linear Hyperbolic First Order Systems.- Non-Linear Equations of the First Order | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Difference equations | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Differential equations | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Mathematik/Analysis | ||
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gianazza, Ugo |e Verfasser |0 (DE-588)1018067728 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-46618-2 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034805170 |
Datensatz im Suchindex
_version_ | 1804186232577589249 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | DiBenedetto, Emmanuele 1947-2021 Gianazza, Ugo |
author_GND | (DE-588)139140034 (DE-588)1018067728 |
author_facet | DiBenedetto, Emmanuele 1947-2021 Gianazza, Ugo |
author_role | aut aut |
author_sort | DiBenedetto, Emmanuele 1947-2021 |
author_variant | e d ed u g ug |
building | Verbundindex |
bvnumber | BV049459418 |
ctrlnum | (OCoLC)1420789900 (DE-599)BVBBV049459418 |
edition | Third edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03236nam a2200553 c 4500</leader><controlfield tag="001">BV049459418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240201 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231208s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031466175</subfield><subfield code="9">978-3-031-46617-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031466175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1420789900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049459418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DiBenedetto, Emmanuele</subfield><subfield code="d">1947-2021</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139140034</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial differential equations</subfield><subfield code="c">Emmanuele DiBenedetto, Ugo Gianazza</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxx, 748 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">1328 gr</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cornerstones</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This graduate textbook provides a self-contained introduction to the classical theory of partial differential equations (PDEs). Through its careful selection of topics and engaging tone, readers will also learn how PDEs connect to cutting-edge research and the modeling of physical phenomena. The scope of the Third Edition greatly expands on that of the previous editions by including five new chapters covering additional PDE topics relevant for current areas of active research. This includes coverage of linear parabolic equations with measurable coefficients, parabolic DeGiorgi classes, Navier-Stokes equations, and more. The "Problems and Complements" sections have also been updated to feature new exercises, examples, and hints toward solutions, making this a timely resource for students.Partial Differential Equations: Third Edition is ideal for graduate students interested in exploring the theory of PDEs and how they connect to contemporary research. It can also serve as a useful tool for more experienced readers who are looking for a comprehensive reference</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preliminaries.- Quasi-Linear Equations and the Cauchy-Kowalewski Theorem.- The Laplace Equation.- Boundary Value Problems by Double-Layer Potentials.- Integral Equations and Eigenvalue Problems.- The Heat Equation.- The Wave Equation.- Quasi-Linear Equations of First Order.- Linear Elliptic Equations with Measurable Coefficients.- Elliptic De Giorgi Classes.- Navier-Stokes Equations.- Quasi-Linear Hyperbolic First Order Systems.- Non-Linear Equations of the First Order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik/Analysis</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gianazza, Ugo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018067728</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-46618-2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034805170</subfield></datafield></record></collection> |
id | DE-604.BV049459418 |
illustrated | Illustrated |
index_date | 2024-07-03T23:14:30Z |
indexdate | 2024-07-10T10:07:50Z |
institution | BVB |
isbn | 9783031466175 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034805170 |
oclc_num | 1420789900 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxx, 748 Seiten Illustrationen 1328 gr |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Birkhäuser |
record_format | marc |
series2 | Cornerstones |
spelling | DiBenedetto, Emmanuele 1947-2021 Verfasser (DE-588)139140034 aut Partial differential equations Emmanuele DiBenedetto, Ugo Gianazza Third edition Cham, Switzerland Birkhäuser [2023] xxx, 748 Seiten Illustrationen 1328 gr txt rdacontent n rdamedia nc rdacarrier Cornerstones This graduate textbook provides a self-contained introduction to the classical theory of partial differential equations (PDEs). Through its careful selection of topics and engaging tone, readers will also learn how PDEs connect to cutting-edge research and the modeling of physical phenomena. The scope of the Third Edition greatly expands on that of the previous editions by including five new chapters covering additional PDE topics relevant for current areas of active research. This includes coverage of linear parabolic equations with measurable coefficients, parabolic DeGiorgi classes, Navier-Stokes equations, and more. The "Problems and Complements" sections have also been updated to feature new exercises, examples, and hints toward solutions, making this a timely resource for students.Partial Differential Equations: Third Edition is ideal for graduate students interested in exploring the theory of PDEs and how they connect to contemporary research. It can also serve as a useful tool for more experienced readers who are looking for a comprehensive reference Preliminaries.- Quasi-Linear Equations and the Cauchy-Kowalewski Theorem.- The Laplace Equation.- Boundary Value Problems by Double-Layer Potentials.- Integral Equations and Eigenvalue Problems.- The Heat Equation.- The Wave Equation.- Quasi-Linear Equations of First Order.- Linear Elliptic Equations with Measurable Coefficients.- Elliptic De Giorgi Classes.- Navier-Stokes Equations.- Quasi-Linear Hyperbolic First Order Systems.- Non-Linear Equations of the First Order bicssc bisacsh Functional analysis Difference equations Functional equations Integral equations Mathematical models Differential equations Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Hardcover, Softcover / Mathematik/Analysis Partielle Differentialgleichung (DE-588)4044779-0 s DE-604 Gianazza, Ugo Verfasser (DE-588)1018067728 aut Erscheint auch als Online-Ausgabe 978-3-031-46618-2 |
spellingShingle | DiBenedetto, Emmanuele 1947-2021 Gianazza, Ugo Partial differential equations bicssc bisacsh Functional analysis Difference equations Functional equations Integral equations Mathematical models Differential equations Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4044779-0 |
title | Partial differential equations |
title_auth | Partial differential equations |
title_exact_search | Partial differential equations |
title_exact_search_txtP | Partial differential equations |
title_full | Partial differential equations Emmanuele DiBenedetto, Ugo Gianazza |
title_fullStr | Partial differential equations Emmanuele DiBenedetto, Ugo Gianazza |
title_full_unstemmed | Partial differential equations Emmanuele DiBenedetto, Ugo Gianazza |
title_short | Partial differential equations |
title_sort | partial differential equations |
topic | bicssc bisacsh Functional analysis Difference equations Functional equations Integral equations Mathematical models Differential equations Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | bicssc bisacsh Functional analysis Difference equations Functional equations Integral equations Mathematical models Differential equations Partielle Differentialgleichung |
work_keys_str_mv | AT dibenedettoemmanuele partialdifferentialequations AT gianazzaugo partialdifferentialequations |