Natural language understanding with Python: combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems
Cover -- Title Page -- Copyright -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1: Getting Started with Natural Language Understanding Technology -- Chapter 1: Natural Language Understanding, Related Technologies, and Natural Language Applications -- Understanding the basics o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham ; Mumbai
Packt Publishing
[2023]
|
Ausgabe: | 1st edition |
Schlagworte: | |
Zusammenfassung: | Cover -- Title Page -- Copyright -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1: Getting Started with Natural Language Understanding Technology -- Chapter 1: Natural Language Understanding, Related Technologies, and Natural Language Applications -- Understanding the basics of natural language -- Global considerations - languages, encodings, and translations -- The relationship between conversational AI and NLP -- Exploring interactive applications - chatbots and voice assistants -- Generic voice assistants -- Enterprise assistants -- Translation -- Education -- Exploring non-interactive applications -- Classification -- Sentiment analysis -- Spam and phishing detection -- Fake news detection -- Document retrieval -- Analytics -- Information extraction -- Translation -- Summarization, authorship, correcting grammar, and other applications -- A summary of the types of applications -- A look ahead - Python for NLP -- Summary -- Chapter 2: Identifying Practical Natural Language Understanding Problems -- Identifying problems that are the appropriate level of difficulty for the technology -- Looking at difficult applications of NLU -- Looking at applications that don't need NLP -- Training data -- Application data -- Taking development costs into account -- Taking maintenance costs into account -- A flowchart for deciding on NLU applications -- Summary -- Part 2: Developing and Testing Natural Language Understanding Systems -- Chapter 3: Approaches to Natural Language Understanding - Rule-Based Systems, Machine Learning, and Deep Learning -- Rule-based approaches -- Words and lexicons -- Part-of-speech tagging -- Grammar -- Parsing -- Semantic analysis -- Pragmatic analysis -- Pipelines -- Traditional machine learning approaches -- Representing documents -- Classification -- Deep learning approaches -- Pre-trained models. |
Beschreibung: | 1 Online-Ressource (xxi, 303 Seiten) Illustrationen, Diagramme |
ISBN: | 9781804612996 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049423653 | ||
003 | DE-604 | ||
005 | 20240123 | ||
007 | cr|uuu---uuuuu | ||
008 | 231121s2023 xxk|||| o||u| ||||||eng d | ||
020 | |a 9781804612996 |9 978-1-80461-299-6 | ||
035 | |a (OCoLC)1422385945 | ||
035 | |a (DE-599)KEP093503296 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB |a ii |c XB-IN | ||
049 | |a DE-83 | ||
084 | |a ST 306 |0 (DE-625)143654: |2 rvk | ||
100 | 1 | |a Dahl, Deborah A. |e Verfasser |0 (DE-588)1127155210 |4 aut | |
245 | 1 | 0 | |a Natural language understanding with Python |b combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems |c Deborah A. Dahl |
250 | |a 1st edition | ||
264 | 1 | |a Birmingham ; Mumbai |b Packt Publishing |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xxi, 303 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Cover -- Title Page -- Copyright -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1: Getting Started with Natural Language Understanding Technology -- Chapter 1: Natural Language Understanding, Related Technologies, and Natural Language Applications -- Understanding the basics of natural language -- Global considerations - languages, encodings, and translations -- The relationship between conversational AI and NLP -- Exploring interactive applications - chatbots and voice assistants -- Generic voice assistants -- Enterprise assistants -- Translation -- Education -- Exploring non-interactive applications -- Classification -- Sentiment analysis -- Spam and phishing detection -- Fake news detection -- Document retrieval -- Analytics -- Information extraction -- Translation -- Summarization, authorship, correcting grammar, and other applications -- A summary of the types of applications -- A look ahead - Python for NLP -- Summary -- Chapter 2: Identifying Practical Natural Language Understanding Problems -- Identifying problems that are the appropriate level of difficulty for the technology -- Looking at difficult applications of NLU -- Looking at applications that don't need NLP -- Training data -- Application data -- Taking development costs into account -- Taking maintenance costs into account -- A flowchart for deciding on NLU applications -- Summary -- Part 2: Developing and Testing Natural Language Understanding Systems -- Chapter 3: Approaches to Natural Language Understanding - Rule-Based Systems, Machine Learning, and Deep Learning -- Rule-based approaches -- Words and lexicons -- Part-of-speech tagging -- Grammar -- Parsing -- Semantic analysis -- Pragmatic analysis -- Pipelines -- Traditional machine learning approaches -- Representing documents -- Classification -- Deep learning approaches -- Pre-trained models. | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natürliche Sprache |0 (DE-588)4041354-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Natürliche Sprache |0 (DE-588)4041354-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
912 | |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034751110 |
Datensatz im Suchindex
_version_ | 1804186159927001088 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dahl, Deborah A. |
author_GND | (DE-588)1127155210 |
author_facet | Dahl, Deborah A. |
author_role | aut |
author_sort | Dahl, Deborah A. |
author_variant | d a d da dad |
building | Verbundindex |
bvnumber | BV049423653 |
classification_rvk | ST 306 |
collection | ZDB-4-NLEBK |
ctrlnum | (OCoLC)1422385945 (DE-599)KEP093503296 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03420nmm a2200409 c 4500</leader><controlfield tag="001">BV049423653</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240123 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231121s2023 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804612996</subfield><subfield code="9">978-1-80461-299-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1422385945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP093503296</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield><subfield code="a">ii</subfield><subfield code="c">XB-IN</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 306</subfield><subfield code="0">(DE-625)143654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dahl, Deborah A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1127155210</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural language understanding with Python</subfield><subfield code="b">combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems</subfield><subfield code="c">Deborah A. Dahl</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxi, 303 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1: Getting Started with Natural Language Understanding Technology -- Chapter 1: Natural Language Understanding, Related Technologies, and Natural Language Applications -- Understanding the basics of natural language -- Global considerations - languages, encodings, and translations -- The relationship between conversational AI and NLP -- Exploring interactive applications - chatbots and voice assistants -- Generic voice assistants -- Enterprise assistants -- Translation -- Education -- Exploring non-interactive applications -- Classification -- Sentiment analysis -- Spam and phishing detection -- Fake news detection -- Document retrieval -- Analytics -- Information extraction -- Translation -- Summarization, authorship, correcting grammar, and other applications -- A summary of the types of applications -- A look ahead - Python for NLP -- Summary -- Chapter 2: Identifying Practical Natural Language Understanding Problems -- Identifying problems that are the appropriate level of difficulty for the technology -- Looking at difficult applications of NLU -- Looking at applications that don't need NLP -- Training data -- Application data -- Taking development costs into account -- Taking maintenance costs into account -- A flowchart for deciding on NLU applications -- Summary -- Part 2: Developing and Testing Natural Language Understanding Systems -- Chapter 3: Approaches to Natural Language Understanding - Rule-Based Systems, Machine Learning, and Deep Learning -- Rule-based approaches -- Words and lexicons -- Part-of-speech tagging -- Grammar -- Parsing -- Semantic analysis -- Pragmatic analysis -- Pipelines -- Traditional machine learning approaches -- Representing documents -- Classification -- Deep learning approaches -- Pre-trained models.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natürliche Sprache</subfield><subfield code="0">(DE-588)4041354-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Natürliche Sprache</subfield><subfield code="0">(DE-588)4041354-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034751110</subfield></datafield></record></collection> |
id | DE-604.BV049423653 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:08:24Z |
indexdate | 2024-07-10T10:06:42Z |
institution | BVB |
isbn | 9781804612996 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034751110 |
oclc_num | 1422385945 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (xxi, 303 Seiten) Illustrationen, Diagramme |
psigel | ZDB-4-NLEBK |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing |
record_format | marc |
spelling | Dahl, Deborah A. Verfasser (DE-588)1127155210 aut Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems Deborah A. Dahl 1st edition Birmingham ; Mumbai Packt Publishing [2023] © 2023 1 Online-Ressource (xxi, 303 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1: Getting Started with Natural Language Understanding Technology -- Chapter 1: Natural Language Understanding, Related Technologies, and Natural Language Applications -- Understanding the basics of natural language -- Global considerations - languages, encodings, and translations -- The relationship between conversational AI and NLP -- Exploring interactive applications - chatbots and voice assistants -- Generic voice assistants -- Enterprise assistants -- Translation -- Education -- Exploring non-interactive applications -- Classification -- Sentiment analysis -- Spam and phishing detection -- Fake news detection -- Document retrieval -- Analytics -- Information extraction -- Translation -- Summarization, authorship, correcting grammar, and other applications -- A summary of the types of applications -- A look ahead - Python for NLP -- Summary -- Chapter 2: Identifying Practical Natural Language Understanding Problems -- Identifying problems that are the appropriate level of difficulty for the technology -- Looking at difficult applications of NLU -- Looking at applications that don't need NLP -- Training data -- Application data -- Taking development costs into account -- Taking maintenance costs into account -- A flowchart for deciding on NLU applications -- Summary -- Part 2: Developing and Testing Natural Language Understanding Systems -- Chapter 3: Approaches to Natural Language Understanding - Rule-Based Systems, Machine Learning, and Deep Learning -- Rule-based approaches -- Words and lexicons -- Part-of-speech tagging -- Grammar -- Parsing -- Semantic analysis -- Pragmatic analysis -- Pipelines -- Traditional machine learning approaches -- Representing documents -- Classification -- Deep learning approaches -- Pre-trained models. Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Natürliche Sprache (DE-588)4041354-8 gnd rswk-swf Natürliche Sprache (DE-588)4041354-8 s Maschinelles Lernen (DE-588)4193754-5 s Python Programmiersprache (DE-588)4434275-5 s DE-604 |
spellingShingle | Dahl, Deborah A. Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd Natürliche Sprache (DE-588)4041354-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4434275-5 (DE-588)4041354-8 |
title | Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems |
title_auth | Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems |
title_exact_search | Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems |
title_exact_search_txtP | Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems |
title_full | Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems Deborah A. Dahl |
title_fullStr | Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems Deborah A. Dahl |
title_full_unstemmed | Natural language understanding with Python combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems Deborah A. Dahl |
title_short | Natural language understanding with Python |
title_sort | natural language understanding with python combine natural language technology deep learning and large language models to create human like language comprehension in computer systems |
title_sub | combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd Natürliche Sprache (DE-588)4041354-8 gnd |
topic_facet | Maschinelles Lernen Python Programmiersprache Natürliche Sprache |
work_keys_str_mv | AT dahldeboraha naturallanguageunderstandingwithpythoncombinenaturallanguagetechnologydeeplearningandlargelanguagemodelstocreatehumanlikelanguagecomprehensionincomputersystems |