Fixed point theory and variational principles in metric spaces:
The book is designed for undergraduates, graduates, and researchers of mathematics studying fixed point theory or nonlinear analysis. It deals with the fixed point theory for not only single-valued maps but also set-valued maps. The text is divided into three parts: fixed point theory for single-val...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2023
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 DE-91 Volltext |
Zusammenfassung: | The book is designed for undergraduates, graduates, and researchers of mathematics studying fixed point theory or nonlinear analysis. It deals with the fixed point theory for not only single-valued maps but also set-valued maps. The text is divided into three parts: fixed point theory for single-valued mappings, continuity and fixed point aspects of set-valued analysis, and variational principles and their equilibrium problems. It comprises a comprehensive study of these topics and includes all important results derived from them. The applications of fixed point principles and variational principles, and their generalizations to differential equations and optimization are covered in the text. An elementary treatment of the theory of equilibrium problems and equilibrium version of Ekeland's variational principle is also provided. New topics such as equilibrium problems, variational principles, Caristi's fixed point theorem, and Takahashi's minimization theorem with their applications are also included. |
Beschreibung: | 1 Online-Ressource (xiv, 219 Seiten) |
ISBN: | 9781009351430 |
DOI: | 10.1017/9781009351430 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049418006 | ||
003 | DE-604 | ||
005 | 20240719 | ||
007 | cr|uuu---uuuuu | ||
008 | 231116s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009351430 |c Online |9 978-1-009-35143-0 | ||
024 | 7 | |a 10.1017/9781009351430 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009351430 | ||
035 | |a (OCoLC)1410706765 | ||
035 | |a (DE-599)BVBBV049418006 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-91 |a DE-521 | ||
082 | 0 | |a 514.32 | |
084 | |a MAT 540 |2 stub | ||
100 | 1 | |a Ansari, Qamrul Hasan |d 1959- |0 (DE-588)1018430636 |4 aut | |
245 | 1 | 0 | |a Fixed point theory and variational principles in metric spaces |c Qamrul Hasan Ansari, D.R. Sahu |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xiv, 219 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The book is designed for undergraduates, graduates, and researchers of mathematics studying fixed point theory or nonlinear analysis. It deals with the fixed point theory for not only single-valued maps but also set-valued maps. The text is divided into three parts: fixed point theory for single-valued mappings, continuity and fixed point aspects of set-valued analysis, and variational principles and their equilibrium problems. It comprises a comprehensive study of these topics and includes all important results derived from them. The applications of fixed point principles and variational principles, and their generalizations to differential equations and optimization are covered in the text. An elementary treatment of the theory of equilibrium problems and equilibrium version of Ekeland's variational principle is also provided. New topics such as equilibrium problems, variational principles, Caristi's fixed point theorem, and Takahashi's minimization theorem with their applications are also included. | ||
650 | 4 | |a Metric spaces | |
650 | 4 | |a Fixed point theory | |
650 | 4 | |a Variational principles | |
700 | 1 | |a Sahu, D. R. |c (Mathematician) |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-35145-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009351430 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034744976 | |
966 | e | |u https://doi.org/10.1017/9781009351430 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009351430 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009351430 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009351430 |l DE-91 |p ZDB-20-CBO |q TUM_Einzelkauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1812883254853763072 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ansari, Qamrul Hasan 1959- Sahu, D. R. (Mathematician) |
author_GND | (DE-588)1018430636 |
author_facet | Ansari, Qamrul Hasan 1959- Sahu, D. R. (Mathematician) |
author_role | aut aut |
author_sort | Ansari, Qamrul Hasan 1959- |
author_variant | q h a qh qha d r s dr drs |
building | Verbundindex |
bvnumber | BV049418006 |
classification_tum | MAT 540 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009351430 (OCoLC)1410706765 (DE-599)BVBBV049418006 |
dewey-full | 514.32 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.32 |
dewey-search | 514.32 |
dewey-sort | 3514.32 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009351430 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049418006</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240719</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231116s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009351430</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-009-35143-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009351430</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009351430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1410706765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049418006</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.32</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 540</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ansari, Qamrul Hasan</subfield><subfield code="d">1959-</subfield><subfield code="0">(DE-588)1018430636</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed point theory and variational principles in metric spaces</subfield><subfield code="c">Qamrul Hasan Ansari, D.R. Sahu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 219 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book is designed for undergraduates, graduates, and researchers of mathematics studying fixed point theory or nonlinear analysis. It deals with the fixed point theory for not only single-valued maps but also set-valued maps. The text is divided into three parts: fixed point theory for single-valued mappings, continuity and fixed point aspects of set-valued analysis, and variational principles and their equilibrium problems. It comprises a comprehensive study of these topics and includes all important results derived from them. The applications of fixed point principles and variational principles, and their generalizations to differential equations and optimization are covered in the text. An elementary treatment of the theory of equilibrium problems and equilibrium version of Ekeland's variational principle is also provided. New topics such as equilibrium problems, variational principles, Caristi's fixed point theorem, and Takahashi's minimization theorem with their applications are also included.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational principles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sahu, D. R.</subfield><subfield code="c">(Mathematician)</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-35145-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009351430</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034744976</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009351430</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009351430</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009351430</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009351430</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049418006 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:07:09Z |
indexdate | 2024-10-14T10:03:18Z |
institution | BVB |
isbn | 9781009351430 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034744976 |
oclc_num | 1410706765 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-91 DE-BY-TUM DE-521 |
owner_facet | DE-12 DE-92 DE-634 DE-91 DE-BY-TUM DE-521 |
physical | 1 Online-Ressource (xiv, 219 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf_2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Ansari, Qamrul Hasan 1959- (DE-588)1018430636 aut Fixed point theory and variational principles in metric spaces Qamrul Hasan Ansari, D.R. Sahu Cambridge, United Kingdom Cambridge University Press 2023 1 Online-Ressource (xiv, 219 Seiten) txt rdacontent c rdamedia cr rdacarrier The book is designed for undergraduates, graduates, and researchers of mathematics studying fixed point theory or nonlinear analysis. It deals with the fixed point theory for not only single-valued maps but also set-valued maps. The text is divided into three parts: fixed point theory for single-valued mappings, continuity and fixed point aspects of set-valued analysis, and variational principles and their equilibrium problems. It comprises a comprehensive study of these topics and includes all important results derived from them. The applications of fixed point principles and variational principles, and their generalizations to differential equations and optimization are covered in the text. An elementary treatment of the theory of equilibrium problems and equilibrium version of Ekeland's variational principle is also provided. New topics such as equilibrium problems, variational principles, Caristi's fixed point theorem, and Takahashi's minimization theorem with their applications are also included. Metric spaces Fixed point theory Variational principles Sahu, D. R. (Mathematician) aut Erscheint auch als Druck-Ausgabe 978-1-009-35145-4 https://doi.org/10.1017/9781009351430 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ansari, Qamrul Hasan 1959- Sahu, D. R. (Mathematician) Fixed point theory and variational principles in metric spaces Metric spaces Fixed point theory Variational principles |
title | Fixed point theory and variational principles in metric spaces |
title_auth | Fixed point theory and variational principles in metric spaces |
title_exact_search | Fixed point theory and variational principles in metric spaces |
title_exact_search_txtP | Fixed point theory and variational principles in metric spaces |
title_full | Fixed point theory and variational principles in metric spaces Qamrul Hasan Ansari, D.R. Sahu |
title_fullStr | Fixed point theory and variational principles in metric spaces Qamrul Hasan Ansari, D.R. Sahu |
title_full_unstemmed | Fixed point theory and variational principles in metric spaces Qamrul Hasan Ansari, D.R. Sahu |
title_short | Fixed point theory and variational principles in metric spaces |
title_sort | fixed point theory and variational principles in metric spaces |
topic | Metric spaces Fixed point theory Variational principles |
topic_facet | Metric spaces Fixed point theory Variational principles |
url | https://doi.org/10.1017/9781009351430 |
work_keys_str_mv | AT ansariqamrulhasan fixedpointtheoryandvariationalprinciplesinmetricspaces AT sahudr fixedpointtheoryandvariationalprinciplesinmetricspaces |