Cutkosky’s theorem: one-loop and beyond:

Wir untersuchen die analytische Struktur von Feynman Integralen als mengenwertige holomorphe Funktionen mit topologischen Methoden, spezifisch mit Techniken für singuläre Integrale. Der Hauptfokus liegt auf dem Ein-Schleifen-Fall. Zunächst geben wir einen gründlichen Überblick über die Theorie der s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mühlbauer, Maximilian (VerfasserIn)
Format: Abschlussarbeit Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin [2023?]
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:Wir untersuchen die analytische Struktur von Feynman Integralen als mengenwertige holomorphe Funktionen mit topologischen Methoden, spezifisch mit Techniken für singuläre Integrale. Der Hauptfokus liegt auf dem Ein-Schleifen-Fall. Zunächst geben wir einen gründlichen Überblick über die Theorie der singulären Integrale und füllen einige Lücken in der Literatur. Anschließend untersuchen wir die Topologie von endlichen Vereinigungen und Schnitten von bestimmten nicht-degenerierten affinen komplexes Quadriken, welche die relevante Geometrie von Ein-Schleifen Feynman Integralen darstellen. Wir etablieren einige grundsätzliche topologische Eigenschaften und führen eine Kompaktifizierung von Bündeln solcher Räume und eine Whitney Stratifizierung dieser ein. Des Weiteren berechnen wir die Homologiegruppen der Fasern durch eine Dekomposition in die auftretenden Schnitte komplexer Sphären. Das Einführen einer CW-Dekomposition einer spezifischen Faser führt zu einer kombinatorischen Studie, welche es uns erlaubt explizite Generatoren in Sinne dieser CW-Strukture zu berechnen. Unter Verwendung dieser Generatoren berechnen wir die relevanten Schnittindizes, welche im Ramifizierungsproblem auftreten. Durch Anwendung dieser Resultate auf Ein-Schleifen Feynman Integrale finden wir die klassischen Landau Gleichungen wieder und erhalten einen vollständigen Beweis von Cutkoskys Theorem. Des Weiteren untersuchen wir, wie viel dieses Mechanismus sich auf den Mehr-Schleifen Fall überträgt. Insbesondere betrachten wir zwei Beispiele von Mehr-Schleifen Integralen und erhalten Resultate die über den aktuellen Stand der Literatur hinaus gehen.
Englische Version: We investigate the analytic structure of Feynman integrals as multivalued holomorphic functions with topological methods, specifically with techniques for singular integrals. The main focus lies on the one-loop case. First, we conduct a thorough review of the theory of singular integrals, filling some gaps in the literature. Then, we investigate the topology of finite unions and intersections of certain non-degenerate affine complex quadrics which constitute the relevant geometry of one-loop Feynman integrals. We establish some basic topological properties and introduce a compactification of bundles of such spaces and a Whitney stratification thereof. Furthermore, we compute the homology groups of the fibers via a decomposition into the direct sum of all occurring intersections of complex spheres. Introducing a CW-decomposition of a specific fiber leads to a combinatorial study, allowing us to obtain explicit generators in terms of this CW-structure. Using these generators, we compute the relative intersection indices that occur in the ramification problem. Applying these results to one-loop Feynman integrals, we retrieve the classical Landau equations and obtain a full proof of Cutkosky's Theorem. Furthermore, we investigate how much of this machinery applies to the multi-loop case. In particular, we consider two examples of multi-loop integrals and obtain results beyond the current state of the literature.
Beschreibung:Tag der mündlichen Prüfung: 06. Oktober 2023
Der Text enthält eine Zusammenfassung in deutscher und englischer Sprache.
Veröffentlichung der elektronischen Ressource auf dem edoc-Server der Humboldt-Universität zu Berlin: 2023
Beschreibung:1 Online-Ressource (vi, 211 Seiten) Illustrationen, Diagramme

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen