Learning data mining with Python: use Python to manipulate data and build predictive models

Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the Jupyter Notebook -- Installing Python -- Installing Jupyt...

Full description

Saved in:
Bibliographic Details
Main Author: Layton, Robert (Author)
Format: Electronic eBook
Language:English
Published: Birmingham Packt Publishing 2017
Edition:Second edition
Subjects:
Online Access:BTW01
Volltext
Summary:Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the Jupyter Notebook -- Installing Python -- Installing Jupyter Notebook -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Downloading the example code -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example -- What is classification? -- Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn Estimators -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing -- Standard pre-processing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees -- Loading the dataset -- Collecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Setting parameters in Random Forests -- Applying random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Overall methodology -- Dealing with the movie recommendation problem -- Obtaining the dataset -- Loading with pandas -- Sparse data formats -- Understanding the Apriori algorithm and its implementation.
Physical Description:1 online resource (348 pages)
ISBN:9781787129566

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text