Scalable and distributed machine learning and deep learning patterns:
Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent mode...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey PA, USA
IGI Global
[2023]
|
Schriftenreihe: | Advances in computational intelligence and robotics (ACIR) book series
|
Schlagworte: | |
Online-Zugang: | DE-188 DE-83 DE-91 DE-706 DE-898 DE-1050 Volltext |
Zusammenfassung: | Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work.This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs. |
Beschreibung: | 1 Online-Ressource (xxix, 268 Seiten) Illustrationen, Diagramme |
ISBN: | 9781668498057 |
DOI: | 10.4018/978-1-6684-9804-0 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049327278 | ||
003 | DE-604 | ||
005 | 20240620 | ||
007 | cr|uuu---uuuuu | ||
008 | 230914s2023 xx a||| o|||| 00||| eng d | ||
020 | |a 9781668498057 |c Online |9 978-1-66849-805-7 | ||
024 | 7 | |a 10.4018/978-1-6684-9804-0 |2 doi | |
035 | |a (ZDB-98-IGB)00320248 | ||
035 | |a (ZDB-98-IGB)9781668498057 | ||
035 | |a (OCoLC)1401193193 | ||
035 | |a (DE-599)BVBBV049327278 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-188 |a DE-706 |a DE-83 |a DE-898 |a DE-1050 | ||
082 | 0 | |a 006.3/1 | |
084 | |a WIR 523 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
245 | 1 | 0 | |a Scalable and distributed machine learning and deep learning patterns |c [edited by] J. Joshua Thomas (UOW Malaysia KDU Penang University College, Malaysia), S. Harini (Vellore Institute of Technology, India), V. Pattabiraman (Vellore Institute of Technology, India) |
264 | 1 | |a Hershey PA, USA |b IGI Global |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xxix, 268 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in computational intelligence and robotics (ACIR) book series | |
520 | |a Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work.This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs. | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Deep learning (Machine learning) | |
650 | 4 | |a Algorithms | |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-188 | |
700 | 1 | |a Thomas, J. Joshua |d 1973- |0 (DE-588)1222058235 |4 edt | |
700 | 1 | |a Sriraman, Harini |d 1982- |0 (DE-588)1309112746 |4 edt | |
700 | 1 | |a Venkatasubbu, Pattabiraman |d 1976- |0 (DE-588)1309113289 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-6684-9804-0 |
856 | 4 | 0 | |u https://doi.org/10.4018/978-1-6684-9804-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-98-IGB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034588113 | |
966 | e | |u https://doi.org/10.4018/978-1-6684-9804-0 |l DE-188 |p ZDB-98-IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-6684-9804-0 |l DE-83 |p ZDB-98-IGB |q TUB_EBS_IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-6684-9804-0 |l DE-91 |p ZDB-98-IGB |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-6684-9804-0 |l DE-706 |p ZDB-98-IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-6684-9804-0 |l DE-898 |p ZDB-98-IGB |q FHR_PDA_IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-6684-9804-0 |l DE-1050 |p ZDB-98-IGB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818715326031855616 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Thomas, J. Joshua 1973- Sriraman, Harini 1982- Venkatasubbu, Pattabiraman 1976- |
author2_role | edt edt edt |
author2_variant | j j t jj jjt h s hs p v pv |
author_GND | (DE-588)1222058235 (DE-588)1309112746 (DE-588)1309113289 |
author_facet | Thomas, J. Joshua 1973- Sriraman, Harini 1982- Venkatasubbu, Pattabiraman 1976- |
building | Verbundindex |
bvnumber | BV049327278 |
classification_tum | WIR 523 DAT 000 |
collection | ZDB-98-IGB |
ctrlnum | (ZDB-98-IGB)00320248 (ZDB-98-IGB)9781668498057 (OCoLC)1401193193 (DE-599)BVBBV049327278 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
doi_str_mv | 10.4018/978-1-6684-9804-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049327278</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240620</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230914s2023 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781668498057</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-66849-805-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-6684-9804-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-98-IGB)00320248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-98-IGB)9781668498057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401193193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049327278</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 523</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scalable and distributed machine learning and deep learning patterns</subfield><subfield code="c">[edited by] J. Joshua Thomas (UOW Malaysia KDU Penang University College, Malaysia), S. Harini (Vellore Institute of Technology, India), V. Pattabiraman (Vellore Institute of Technology, India)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey PA, USA</subfield><subfield code="b">IGI Global</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxix, 268 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in computational intelligence and robotics (ACIR) book series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work.This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning (Machine learning)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, J. Joshua</subfield><subfield code="d">1973-</subfield><subfield code="0">(DE-588)1222058235</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sriraman, Harini</subfield><subfield code="d">1982-</subfield><subfield code="0">(DE-588)1309112746</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Venkatasubbu, Pattabiraman</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)1309113289</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-6684-9804-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4018/978-1-6684-9804-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034588113</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-9804-0</subfield><subfield code="l">DE-188</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-9804-0</subfield><subfield code="l">DE-83</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUB_EBS_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-9804-0</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-9804-0</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-9804-0</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHR_PDA_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-6684-9804-0</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049327278 |
illustrated | Illustrated |
index_date | 2024-07-03T22:44:33Z |
indexdate | 2024-12-17T19:01:35Z |
institution | BVB |
isbn | 9781668498057 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034588113 |
oclc_num | 1401193193 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-188 DE-706 DE-83 DE-898 DE-BY-UBR DE-1050 |
owner_facet | DE-91 DE-BY-TUM DE-188 DE-706 DE-83 DE-898 DE-BY-UBR DE-1050 |
physical | 1 Online-Ressource (xxix, 268 Seiten) Illustrationen, Diagramme |
psigel | ZDB-98-IGB ZDB-98-IGB TUB_EBS_IGB ZDB-98-IGB TUM_Paketkauf_2023 ZDB-98-IGB FHR_PDA_IGB |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | IGI Global |
record_format | marc |
series2 | Advances in computational intelligence and robotics (ACIR) book series |
spelling | Scalable and distributed machine learning and deep learning patterns [edited by] J. Joshua Thomas (UOW Malaysia KDU Penang University College, Malaysia), S. Harini (Vellore Institute of Technology, India), V. Pattabiraman (Vellore Institute of Technology, India) Hershey PA, USA IGI Global [2023] © 2023 1 Online-Ressource (xxix, 268 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Advances in computational intelligence and robotics (ACIR) book series Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work.This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs. Machine learning Deep learning (Machine learning) Algorithms Deep learning (DE-588)1135597375 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Deep learning (DE-588)1135597375 s DE-188 Thomas, J. Joshua 1973- (DE-588)1222058235 edt Sriraman, Harini 1982- (DE-588)1309112746 edt Venkatasubbu, Pattabiraman 1976- (DE-588)1309113289 edt Erscheint auch als Druck-Ausgabe, Hardcover 978-1-6684-9804-0 https://doi.org/10.4018/978-1-6684-9804-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Scalable and distributed machine learning and deep learning patterns Machine learning Deep learning (Machine learning) Algorithms Deep learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)1135597375 (DE-588)4193754-5 |
title | Scalable and distributed machine learning and deep learning patterns |
title_auth | Scalable and distributed machine learning and deep learning patterns |
title_exact_search | Scalable and distributed machine learning and deep learning patterns |
title_exact_search_txtP | Scalable and distributed machine learning and deep learning patterns |
title_full | Scalable and distributed machine learning and deep learning patterns [edited by] J. Joshua Thomas (UOW Malaysia KDU Penang University College, Malaysia), S. Harini (Vellore Institute of Technology, India), V. Pattabiraman (Vellore Institute of Technology, India) |
title_fullStr | Scalable and distributed machine learning and deep learning patterns [edited by] J. Joshua Thomas (UOW Malaysia KDU Penang University College, Malaysia), S. Harini (Vellore Institute of Technology, India), V. Pattabiraman (Vellore Institute of Technology, India) |
title_full_unstemmed | Scalable and distributed machine learning and deep learning patterns [edited by] J. Joshua Thomas (UOW Malaysia KDU Penang University College, Malaysia), S. Harini (Vellore Institute of Technology, India), V. Pattabiraman (Vellore Institute of Technology, India) |
title_short | Scalable and distributed machine learning and deep learning patterns |
title_sort | scalable and distributed machine learning and deep learning patterns |
topic | Machine learning Deep learning (Machine learning) Algorithms Deep learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Machine learning Deep learning (Machine learning) Algorithms Deep learning Maschinelles Lernen |
url | https://doi.org/10.4018/978-1-6684-9804-0 |
work_keys_str_mv | AT thomasjjoshua scalableanddistributedmachinelearninganddeeplearningpatterns AT sriramanharini scalableanddistributedmachinelearninganddeeplearningpatterns AT venkatasubbupattabiraman scalableanddistributedmachinelearninganddeeplearningpatterns |