Stochastic calculus of variations: for jump processes
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
|
Ausgabe: | 3rd edition |
Schriftenreihe: | De Gruyter Studies in Mathematics
volume 54 |
Schlagworte: | |
Online-Zugang: | https://www.degruyter.com/isbn/9783110675283 Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XIII, 360 Seiten Illustrationen 24 cm x 17 cm, 751 g |
ISBN: | 9783110675283 3110675285 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV049088502 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 230803s2023 gw a||| |||| 00||| eng d | ||
015 | |a 23,N12 |2 dnb | ||
016 | 7 | |a 1283839342 |2 DE-101 | |
020 | |a 9783110675283 |c : EUR 174.95 (DE) (freier Preis), EUR 174.95 (AT) (freier Preis) |9 978-3-11-067528-3 | ||
020 | |a 3110675285 |9 3-11-067528-5 | ||
024 | 3 | |a 9783110675283 | |
035 | |a (OCoLC)1392144487 | ||
035 | |a (DE-599)DNB1283839342 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T | ||
082 | 0 | |a 510 |2 23 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 49J55 |2 msc | ||
084 | |8 1\p |a 510 |2 23sdnb | ||
100 | 1 | |a Ishikawa, Yasushi |d 1959- |e Verfasser |0 (DE-588)1036467341 |4 aut | |
245 | 1 | 0 | |a Stochastic calculus of variations |b for jump processes |c Yasushi Ishikawa |
250 | |a 3rd edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
300 | |a XIII, 360 Seiten |b Illustrationen |c 24 cm x 17 cm, 751 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics |v volume 54 | |
650 | 0 | 7 | |a Malliavin-Kalkül |0 (DE-588)4242584-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sprungprozess |0 (DE-588)4427906-1 |2 gnd |9 rswk-swf |
653 | |a Stochastische partielle Differentialgleichung | ||
653 | |a Malliavin-Kalkül | ||
653 | |a Stochastische Analysis | ||
653 | |a Stochastische Funktional-Differentialgleichung | ||
653 | |a Stochastische partielle Differentialgleichung; Malliavin-Kalkül; Stochastische Analysis; Stochastische Funktional-Differentialgleichung | ||
689 | 0 | 0 | |a Sprungprozess |0 (DE-588)4427906-1 |D s |
689 | 0 | 1 | |a Malliavin-Kalkül |0 (DE-588)4242584-0 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-067529-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-067532-0 |
780 | 0 | 0 | |i Vorangegangen ist |z 9783110377767 |
830 | 0 | |a De Gruyter Studies in Mathematics |v volume 54 |w (DE-604)BV000005407 |9 54 | |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/isbn/9783110675283 |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1283839342/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034350276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034350276 | ||
883 | 1 | |8 1\p |a vlb |d 20230319 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804185423198552064 |
---|---|
adam_text | CONTENTS
PREFACE
TO
THE
FIRST
EDITION
-
V
PREFACE
TO
THE
SECOND
EDITION
-
VII
PREFACE
TO
THE
THIRD
EDITION
-
IX
0
INTRODUCTION
-
1
1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.3.1
LEVY
PROCESSES
AND
LTD
CALCULUS
-
5
POISSON
RANDOM
MEASURE
AND
LEVY
PROCESSES
-
5
LEVY
PROCESSES
-
5
EXAMPLES
OF
LEVY
PROCESSES
-
9
THE
STOCHASTIC
INTEGRAL
FOR
A
FINITE
VARIATION
PROCESS
AND
RELATED
TOPICS
-
14
BASIC
MATERIAL
FOR
SDES
WITH
JUMPS
-
16
MARTINGALES
AND
SEMIMARTINGALES
-
17
STOCHASTIC
INTEGRAL
WITH
RESPECT
TO
SEMIMARTINGALES
-
19
KUNITA-WATANABE
INEQUALITIES
-
28
DOLEANS-DADE
EXPONENTIAL
AND
GIRSANOV
TRANSFORMATION
-
31
LTD
PROCESSES
WITH
JUMPS
-
35
PURE
JUMP
TYPE
SDE
-
40
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
PERTURBATIONS
AND
PROPERTIES
OF
THE
PROBABILITY
LAW
-
47
INTEGRATION-BY-PARTS
ON
POISSON
SPACE
-
47
BISMUT
S
METHOD
-
50
PICARD
S
METHOD
-
61
SOME
PREVIOUS
METHODS
-
67
METHODS
OF
FINDING
THE
ASYMPTOTIC
BOUNDS
(I)
-
77
MARKOV
CHAIN
APPROXIMATION
-
78
PROOF
OF
THEOREM
2.3
-
82
PROOF
OF
LEMMAS
-
89
METHODS
OF
FINDING
THE
ASYMPTOTIC
BOUNDS
(II)
-
101
POLYGONAL
GEOMETRY
-
101
PROOF
OF
THEOREM
2.4
-
102
EXAMPLE
OF
THEOREM
2.4
-
EASY
CASES
-
112
SUMMARY
OF
SHORT-TIME
ASYMPTOTIC
BOUNDS
-
120
CASE
THAT
P{DZ)
IS
ABSOLUTELY
CONTINUOUS
WITH
RESPECT
TO
THE
M-DIMENSIONAL
LEBESGUE
MEASURE
DZ
-
120
2.4.2
2.5
2.5.1
CASE
THAT
P(DZ)
IS
SINGULAR
WITH
RESPECT
TO
DZ
-
121
AUXILIARY
TOPICS
-
123
MARCUS
CANONICAL
PROCESSES
-
124
XII
-
CONTENTS
2.5.2
2.5.3
2.5.4
ABSOLUTE
CONTINUITY
OF
THE
INFINITELY
DIVISIBLE
LAWS
-
126
CHAIN
MOVEMENT
APPROXIMATION
-
132
SUPPORT
THEOREM
FOR
CANONICAL
PROCESSES
-
142
3
3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.7
ANALYSIS
OF
WIENER-POISSON
FUNCTIONALS
-
146
CALCULUS
OF
FUNCTIONALS
ON
THE
WIENER
SPACE
-
146
DEFINITION
OF
THE
MALLIAVIN-SHIGEKAWA
DERIVATIVE
D
T
-
148
ADJOINT
OPERATOR
8
=
D*
-
153
CALCULUS
OF
FUNCTIONALS
ON
THE
POISSON
SPACE
-
155
ONE-DIMENSIONAL
CASE
-
155
MULTIDIMENSIONAL
CASE
-
159
CHARACTERIZATION
OF
THE
POISSON
SPACE
-
162
SOBOLEV
SPACE
FOR
FUNCTIONALS
ON
THE
WIENER-POISSON
SPACE
-
166
THE
WIENER
SPACE
-
167
THE
POISSON
SPACE
-
169
THE
WIENER-POISSON
SPACE
-
191
RELATION
WITH
THE
MALLIAVIN
OPERATOR
-
204
COMPOSITION
ON
THE
WIENER-POISSON
SPACE
(I)
-
GENERAL
THEORY
-
206
COMPOSITION
WITH
AN
ELEMENT
IN
S
-
206
SUFFICIENT
CONDITION
FOR
THE
COMPOSITION
-
216
SMOOTHNESS
OF
THE
DENSITY
FOR
ITO
PROCESSES
-
223
PRELIMINARIES
-
223
BIG
PERTURBATIONS
-
231
CONCATENATION
(I)
-
235
CONCATENATION
(II)
-
THE
CASE
THAT
(D)
MAY
FAIL
-
238
MORE
ON
THE
DENSITY
-
244
COMPOSITION
ON
THE
WIENER-POISSON
SPACE
(II)
-
ITO
PROCESSES
-
261
4
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
APPLICATIONS
-
265
ASYMPTOTIC
EXPANSION
OF
THE
SDE
-
265
ANALYSIS
ON
THE
STOCHASTIC
MODEL
-
268
ASYMPTOTIC
EXPANSION
OF
THE
DENSITY
-
291
EXAMPLES
OF
ASYMPTOTIC
EXPANSIONS
-
295
OPTIMAL
CONSUMPTION
PROBLEM
-
301
SETTING
OF
THE
OPTIMAL
CONSUMPTION
-
302
VISCOSITY
SOLUTIONS
-
305
REGULARITY
OF
SOLUTIONS
-
324
OPTIMAL
CONSUMPTION
-
328
HISTORICAL
SKETCH
-
331
A
A.1
APPENDIX
-
335
NOTES
AND
TRIVIAL
MATTERS
-
335
CONTENTS
-
XIII
A.1.1
A.1
.2
A.1
.3
NOTES
-
335
RAMSEY
THEORY
-
339
A
SMALL
APPLICATION
TO
NEURAL
CELL
THEORY
-
340
BIBLIOGRAPHY
-
347
LIST
OF
SYMBOLS
-
357
INDEX
-
359
|
adam_txt |
CONTENTS
PREFACE
TO
THE
FIRST
EDITION
-
V
PREFACE
TO
THE
SECOND
EDITION
-
VII
PREFACE
TO
THE
THIRD
EDITION
-
IX
0
INTRODUCTION
-
1
1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.3.1
LEVY
PROCESSES
AND
LTD
CALCULUS
-
5
POISSON
RANDOM
MEASURE
AND
LEVY
PROCESSES
-
5
LEVY
PROCESSES
-
5
EXAMPLES
OF
LEVY
PROCESSES
-
9
THE
STOCHASTIC
INTEGRAL
FOR
A
FINITE
VARIATION
PROCESS
AND
RELATED
TOPICS
-
14
BASIC
MATERIAL
FOR
SDES
WITH
JUMPS
-
16
MARTINGALES
AND
SEMIMARTINGALES
-
17
STOCHASTIC
INTEGRAL
WITH
RESPECT
TO
SEMIMARTINGALES
-
19
KUNITA-WATANABE
INEQUALITIES
-
28
DOLEANS-DADE
EXPONENTIAL
AND
GIRSANOV
TRANSFORMATION
-
31
LTD
PROCESSES
WITH
JUMPS
-
35
PURE
JUMP
TYPE
SDE
-
40
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
PERTURBATIONS
AND
PROPERTIES
OF
THE
PROBABILITY
LAW
-
47
INTEGRATION-BY-PARTS
ON
POISSON
SPACE
-
47
BISMUT
'
S
METHOD
-
50
PICARD
'
S
METHOD
-
61
SOME
PREVIOUS
METHODS
-
67
METHODS
OF
FINDING
THE
ASYMPTOTIC
BOUNDS
(I)
-
77
MARKOV
CHAIN
APPROXIMATION
-
78
PROOF
OF
THEOREM
2.3
-
82
PROOF
OF
LEMMAS
-
89
METHODS
OF
FINDING
THE
ASYMPTOTIC
BOUNDS
(II)
-
101
POLYGONAL
GEOMETRY
-
101
PROOF
OF
THEOREM
2.4
-
102
EXAMPLE
OF
THEOREM
2.4
-
EASY
CASES
-
112
SUMMARY
OF
SHORT-TIME
ASYMPTOTIC
BOUNDS
-
120
CASE
THAT
P{DZ)
IS
ABSOLUTELY
CONTINUOUS
WITH
RESPECT
TO
THE
M-DIMENSIONAL
LEBESGUE
MEASURE
DZ
-
120
2.4.2
2.5
2.5.1
CASE
THAT
P(DZ)
IS
SINGULAR
WITH
RESPECT
TO
DZ
-
121
AUXILIARY
TOPICS
-
123
MARCUS
'
CANONICAL
PROCESSES
-
124
XII
-
CONTENTS
2.5.2
2.5.3
2.5.4
ABSOLUTE
CONTINUITY
OF
THE
INFINITELY
DIVISIBLE
LAWS
-
126
CHAIN
MOVEMENT
APPROXIMATION
-
132
SUPPORT
THEOREM
FOR
CANONICAL
PROCESSES
-
142
3
3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.7
ANALYSIS
OF
WIENER-POISSON
FUNCTIONALS
-
146
CALCULUS
OF
FUNCTIONALS
ON
THE
WIENER
SPACE
-
146
DEFINITION
OF
THE
MALLIAVIN-SHIGEKAWA
DERIVATIVE
D
T
-
148
ADJOINT
OPERATOR
8
=
D*
-
153
CALCULUS
OF
FUNCTIONALS
ON
THE
POISSON
SPACE
-
155
ONE-DIMENSIONAL
CASE
-
155
MULTIDIMENSIONAL
CASE
-
159
CHARACTERIZATION
OF
THE
POISSON
SPACE
-
162
SOBOLEV
SPACE
FOR
FUNCTIONALS
ON
THE
WIENER-POISSON
SPACE
-
166
THE
WIENER
SPACE
-
167
THE
POISSON
SPACE
-
169
THE
WIENER-POISSON
SPACE
-
191
RELATION
WITH
THE
MALLIAVIN
OPERATOR
-
204
COMPOSITION
ON
THE
WIENER-POISSON
SPACE
(I)
-
GENERAL
THEORY
-
206
COMPOSITION
WITH
AN
ELEMENT
IN
S
'
-
206
SUFFICIENT
CONDITION
FOR
THE
COMPOSITION
-
216
SMOOTHNESS
OF
THE
DENSITY
FOR
ITO
PROCESSES
-
223
PRELIMINARIES
-
223
BIG
PERTURBATIONS
-
231
CONCATENATION
(I)
-
235
CONCATENATION
(II)
-
THE
CASE
THAT
(D)
MAY
FAIL
-
238
MORE
ON
THE
DENSITY
-
244
COMPOSITION
ON
THE
WIENER-POISSON
SPACE
(II)
-
ITO
PROCESSES
-
261
4
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
APPLICATIONS
-
265
ASYMPTOTIC
EXPANSION
OF
THE
SDE
-
265
ANALYSIS
ON
THE
STOCHASTIC
MODEL
-
268
ASYMPTOTIC
EXPANSION
OF
THE
DENSITY
-
291
EXAMPLES
OF
ASYMPTOTIC
EXPANSIONS
-
295
OPTIMAL
CONSUMPTION
PROBLEM
-
301
SETTING
OF
THE
OPTIMAL
CONSUMPTION
-
302
VISCOSITY
SOLUTIONS
-
305
REGULARITY
OF
SOLUTIONS
-
324
OPTIMAL
CONSUMPTION
-
328
HISTORICAL
SKETCH
-
331
A
A.1
APPENDIX
-
335
NOTES
AND
TRIVIAL
MATTERS
-
335
CONTENTS
-
XIII
A.1.1
A.1
.2
A.1
.3
NOTES
-
335
RAMSEY
THEORY
-
339
A
SMALL
APPLICATION
TO
NEURAL
CELL
THEORY
-
340
BIBLIOGRAPHY
-
347
LIST
OF
SYMBOLS
-
357
INDEX
-
359 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Ishikawa, Yasushi 1959- |
author_GND | (DE-588)1036467341 |
author_facet | Ishikawa, Yasushi 1959- |
author_role | aut |
author_sort | Ishikawa, Yasushi 1959- |
author_variant | y i yi |
building | Verbundindex |
bvnumber | BV049088502 |
classification_rvk | SK 820 |
ctrlnum | (OCoLC)1392144487 (DE-599)DNB1283839342 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 3rd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02731nam a22006258cb4500</leader><controlfield tag="001">BV049088502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230803s2023 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N12</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1283839342</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110675283</subfield><subfield code="c">: EUR 174.95 (DE) (freier Preis), EUR 174.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-067528-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110675285</subfield><subfield code="9">3-11-067528-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110675283</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392144487</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1283839342</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49J55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">510</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ishikawa, Yasushi</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1036467341</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic calculus of variations</subfield><subfield code="b">for jump processes</subfield><subfield code="c">Yasushi Ishikawa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 360 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm, 751 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">volume 54</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Malliavin-Kalkül</subfield><subfield code="0">(DE-588)4242584-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sprungprozess</subfield><subfield code="0">(DE-588)4427906-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastische partielle Differentialgleichung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Malliavin-Kalkül</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastische Analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastische Funktional-Differentialgleichung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastische partielle Differentialgleichung; Malliavin-Kalkül; Stochastische Analysis; Stochastische Funktional-Differentialgleichung</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sprungprozess</subfield><subfield code="0">(DE-588)4427906-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Malliavin-Kalkül</subfield><subfield code="0">(DE-588)4242584-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-067529-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-067532-0</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">9783110377767</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">volume 54</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">54</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783110675283</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1283839342/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034350276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034350276</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20230319</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV049088502 |
illustrated | Illustrated |
index_date | 2024-07-03T22:29:16Z |
indexdate | 2024-07-10T09:55:00Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110675283 3110675285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034350276 |
oclc_num | 1392144487 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | XIII, 360 Seiten Illustrationen 24 cm x 17 cm, 751 g |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter Studies in Mathematics |
series2 | De Gruyter Studies in Mathematics |
spelling | Ishikawa, Yasushi 1959- Verfasser (DE-588)1036467341 aut Stochastic calculus of variations for jump processes Yasushi Ishikawa 3rd edition Berlin ; Boston De Gruyter [2023] XIII, 360 Seiten Illustrationen 24 cm x 17 cm, 751 g txt rdacontent n rdamedia nc rdacarrier De Gruyter Studies in Mathematics volume 54 Malliavin-Kalkül (DE-588)4242584-0 gnd rswk-swf Sprungprozess (DE-588)4427906-1 gnd rswk-swf Stochastische partielle Differentialgleichung Malliavin-Kalkül Stochastische Analysis Stochastische Funktional-Differentialgleichung Stochastische partielle Differentialgleichung; Malliavin-Kalkül; Stochastische Analysis; Stochastische Funktional-Differentialgleichung Sprungprozess (DE-588)4427906-1 s Malliavin-Kalkül (DE-588)4242584-0 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-067529-0 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-067532-0 Vorangegangen ist 9783110377767 De Gruyter Studies in Mathematics volume 54 (DE-604)BV000005407 54 X:MVB https://www.degruyter.com/isbn/9783110675283 B:DE-101 application/pdf https://d-nb.info/1283839342/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034350276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20230319 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Ishikawa, Yasushi 1959- Stochastic calculus of variations for jump processes De Gruyter Studies in Mathematics Malliavin-Kalkül (DE-588)4242584-0 gnd Sprungprozess (DE-588)4427906-1 gnd |
subject_GND | (DE-588)4242584-0 (DE-588)4427906-1 |
title | Stochastic calculus of variations for jump processes |
title_auth | Stochastic calculus of variations for jump processes |
title_exact_search | Stochastic calculus of variations for jump processes |
title_exact_search_txtP | Stochastic calculus of variations for jump processes |
title_full | Stochastic calculus of variations for jump processes Yasushi Ishikawa |
title_fullStr | Stochastic calculus of variations for jump processes Yasushi Ishikawa |
title_full_unstemmed | Stochastic calculus of variations for jump processes Yasushi Ishikawa |
title_short | Stochastic calculus of variations |
title_sort | stochastic calculus of variations for jump processes |
title_sub | for jump processes |
topic | Malliavin-Kalkül (DE-588)4242584-0 gnd Sprungprozess (DE-588)4427906-1 gnd |
topic_facet | Malliavin-Kalkül Sprungprozess |
url | https://www.degruyter.com/isbn/9783110675283 https://d-nb.info/1283839342/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034350276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005407 |
work_keys_str_mv | AT ishikawayasushi stochasticcalculusofvariationsforjumpprocesses AT walterdegruytergmbhcokg stochasticcalculusofvariationsforjumpprocesses |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis