Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage:
Advances in agricultural data production provide ever-increasing opportunities for pushing the research frontier in agricultural economics and designing better agricultural policy. As new technologies present opportunities to create new and integrated data sources, researchers face trade-offs in sur...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2021
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | Advances in agricultural data production provide ever-increasing opportunities for pushing the research frontier in agricultural economics and designing better agricultural policy. As new technologies present opportunities to create new and integrated data sources, researchers face trade-offs in survey design that may reduce measurement error or increase coverage. This paper first reviews the econometric and survey methodology literatures that focus on the sources of measurement error and coverage bias in agricultural data collection. Second, it provides examples of how agricultural data structure affects testable empirical models. Finally, it reviews the challenges and opportunities offered by technological innovation to meet old and new data demands and address key empirical questions, focusing on the scalable data innovations of greatest potential impact for empirical methods and research |
Beschreibung: | 1 Online-Ressource (93 Seiten) |
DOI: | 10.1596/1813-9450-9745 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049081214 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2021 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9745 |2 doi | |
035 | |a (ZDB-1-WBA)068441428 | ||
035 | |a (OCoLC)1392146652 | ||
035 | |a (DE-599)KEP068441428 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Carletto, Calogero |e Verfasser |4 aut | |
245 | 1 | 0 | |a Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage |c Calogero Carletto |
264 | 1 | |a Washington, D.C |b The World Bank |c 2021 | |
300 | |a 1 Online-Ressource (93 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Advances in agricultural data production provide ever-increasing opportunities for pushing the research frontier in agricultural economics and designing better agricultural policy. As new technologies present opportunities to create new and integrated data sources, researchers face trade-offs in survey design that may reduce measurement error or increase coverage. This paper first reviews the econometric and survey methodology literatures that focus on the sources of measurement error and coverage bias in agricultural data collection. Second, it provides examples of how agricultural data structure affects testable empirical models. Finally, it reviews the challenges and opportunities offered by technological innovation to meet old and new data demands and address key empirical questions, focusing on the scalable data innovations of greatest potential impact for empirical methods and research | |
650 | 4 | |a Agricultural Knowledge and Information Systems | |
650 | 4 | |a Agricultural Research | |
650 | 4 | |a Agricultural Sector Economics | |
650 | 4 | |a Agriculture | |
650 | 4 | |a Data Collection | |
650 | 4 | |a Survey Design | |
700 | 1 | |a Dillon, Andrew |e Sonstige |4 oth | |
700 | 1 | |a Zezza, Alberto |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9745 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034343104 |
Datensatz im Suchindex
_version_ | 1824556241820581889 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Carletto, Calogero |
author_facet | Carletto, Calogero |
author_role | aut |
author_sort | Carletto, Calogero |
author_variant | c c cc |
building | Verbundindex |
bvnumber | BV049081214 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)068441428 (OCoLC)1392146652 (DE-599)KEP068441428 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9745 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049081214</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2021 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9745</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)068441428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392146652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP068441428</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carletto, Calogero</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage</subfield><subfield code="c">Calogero Carletto</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (93 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Advances in agricultural data production provide ever-increasing opportunities for pushing the research frontier in agricultural economics and designing better agricultural policy. As new technologies present opportunities to create new and integrated data sources, researchers face trade-offs in survey design that may reduce measurement error or increase coverage. This paper first reviews the econometric and survey methodology literatures that focus on the sources of measurement error and coverage bias in agricultural data collection. Second, it provides examples of how agricultural data structure affects testable empirical models. Finally, it reviews the challenges and opportunities offered by technological innovation to meet old and new data demands and address key empirical questions, focusing on the scalable data innovations of greatest potential impact for empirical methods and research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural Knowledge and Information Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural Sector Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Collection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Survey Design</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dillon, Andrew</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zezza, Alberto</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9745</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034343104</subfield></datafield></record></collection> |
id | DE-604.BV049081214 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:59Z |
indexdate | 2025-02-20T07:20:26Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034343104 |
oclc_num | 1392146652 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (93 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Carletto, Calogero Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage Agricultural Knowledge and Information Systems Agricultural Research Agricultural Sector Economics Agriculture Data Collection Survey Design |
title | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage |
title_auth | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage |
title_exact_search | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage |
title_exact_search_txtP | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage |
title_full | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage Calogero Carletto |
title_fullStr | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage Calogero Carletto |
title_full_unstemmed | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage Calogero Carletto |
title_short | Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage |
title_sort | agricultural data collection to minimize measurement error and maximize coverage |
topic | Agricultural Knowledge and Information Systems Agricultural Research Agricultural Sector Economics Agriculture Data Collection Survey Design |
topic_facet | Agricultural Knowledge and Information Systems Agricultural Research Agricultural Sector Economics Agriculture Data Collection Survey Design |
url | https://doi.org/10.1596/1813-9450-9745 |
work_keys_str_mv | AT carlettocalogero agriculturaldatacollectiontominimizemeasurementerrorandmaximizecoverage AT dillonandrew agriculturaldatacollectiontominimizemeasurementerrorandmaximizecoverage AT zezzaalberto agriculturaldatacollectiontominimizemeasurementerrorandmaximizecoverage |