Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning:
Estimates of poverty are an important input into policy formulation in developing countries. The accurate measurement of poverty rates is therefore a first-order problem for development policy. This paper shows that combining satellite imagery with household surveys can improve the precision and acc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2022
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | Estimates of poverty are an important input into policy formulation in developing countries. The accurate measurement of poverty rates is therefore a first-order problem for development policy. This paper shows that combining satellite imagery with household surveys can improve the precision and accuracy of estimated poverty rates in Mexican municipalities, a level at which the survey is not considered representative. It also shows that a household-level model outperforms other common small area estimation methods. However, poverty estimates in 2015 derived from geospatial data remain less accurate than 2010 estimates derived from household census data. These results indicate that the incorporation of household survey data and widely available satellite imagery can improve on existing poverty estimates in developing countries when census data are old or when patterns of poverty are changing rapidly, even for small subgroups |
Beschreibung: | 1 Online-Ressource (72 Seiten) |
DOI: | 10.1596/1813-9450-10175 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049079778 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2022 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-10175 |2 doi | |
035 | |a (ZDB-1-WBA)082393141 | ||
035 | |a (OCoLC)1392145957 | ||
035 | |a (DE-599)KEP082393141 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Newhouse, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning |c David Newhouse |
264 | 1 | |a Washington, D.C |b The World Bank |c 2022 | |
300 | |a 1 Online-Ressource (72 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Estimates of poverty are an important input into policy formulation in developing countries. The accurate measurement of poverty rates is therefore a first-order problem for development policy. This paper shows that combining satellite imagery with household surveys can improve the precision and accuracy of estimated poverty rates in Mexican municipalities, a level at which the survey is not considered representative. It also shows that a household-level model outperforms other common small area estimation methods. However, poverty estimates in 2015 derived from geospatial data remain less accurate than 2010 estimates derived from household census data. These results indicate that the incorporation of household survey data and widely available satellite imagery can improve on existing poverty estimates in developing countries when census data are old or when patterns of poverty are changing rapidly, even for small subgroups | |
650 | 4 | |a Inequality | |
650 | 4 | |a Information and Communication Technologies | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Poverty | |
650 | 4 | |a Poverty Assessment | |
650 | 4 | |a Poverty Eradication | |
650 | 4 | |a Poverty Mapping | |
650 | 4 | |a Poverty Reduction | |
650 | 4 | |a Poverty, Environment and Development | |
650 | 4 | |a Satellite Data | |
650 | 4 | |a Small Area Estimation | |
650 | 4 | |a Sustainable Development Goals | |
700 | 1 | |a Lahiri, Partha |e Sonstige |4 oth | |
700 | 1 | |a Merfeld, Joshua |e Sonstige |4 oth | |
700 | 1 | |a Ramakrishnan, Anusha Pudugramam |e Sonstige |4 oth | |
700 | 1 | |a Swartz, Tom |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Newhouse, David |t Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning |d Washington, D.C. : The World Bank, 2022 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-10175 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034341669 |
Datensatz im Suchindex
_version_ | 1824556231887421441 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Newhouse, David |
author_facet | Newhouse, David |
author_role | aut |
author_sort | Newhouse, David |
author_variant | d n dn |
building | Verbundindex |
bvnumber | BV049079778 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)082393141 (OCoLC)1392145957 (DE-599)KEP082393141 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-10175 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049079778</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-10175</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)082393141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392145957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP082393141</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Newhouse, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning</subfield><subfield code="c">David Newhouse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (72 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Estimates of poverty are an important input into policy formulation in developing countries. The accurate measurement of poverty rates is therefore a first-order problem for development policy. This paper shows that combining satellite imagery with household surveys can improve the precision and accuracy of estimated poverty rates in Mexican municipalities, a level at which the survey is not considered representative. It also shows that a household-level model outperforms other common small area estimation methods. However, poverty estimates in 2015 derived from geospatial data remain less accurate than 2010 estimates derived from household census data. These results indicate that the incorporation of household survey data and widely available satellite imagery can improve on existing poverty estimates in developing countries when census data are old or when patterns of poverty are changing rapidly, even for small subgroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information and Communication Technologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Eradication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poverty, Environment and Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellite Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small Area Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable Development Goals</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lahiri, Partha</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merfeld, Joshua</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramakrishnan, Anusha Pudugramam</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swartz, Tom</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Newhouse, David</subfield><subfield code="t">Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning</subfield><subfield code="d">Washington, D.C. : The World Bank, 2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-10175</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034341669</subfield></datafield></record></collection> |
id | DE-604.BV049079778 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:56Z |
indexdate | 2025-02-20T07:20:17Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034341669 |
oclc_num | 1392145957 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (72 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Newhouse, David Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning Inequality Information and Communication Technologies Machine Learning Poverty Poverty Assessment Poverty Eradication Poverty Mapping Poverty Reduction Poverty, Environment and Development Satellite Data Small Area Estimation Sustainable Development Goals |
title | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning |
title_auth | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning |
title_exact_search | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning |
title_exact_search_txtP | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning |
title_full | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning David Newhouse |
title_fullStr | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning David Newhouse |
title_full_unstemmed | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning David Newhouse |
title_short | Small Area Estimation of Monetary Poverty in Mexico using Satellite Imagery and Machine Learning |
title_sort | small area estimation of monetary poverty in mexico using satellite imagery and machine learning |
topic | Inequality Information and Communication Technologies Machine Learning Poverty Poverty Assessment Poverty Eradication Poverty Mapping Poverty Reduction Poverty, Environment and Development Satellite Data Small Area Estimation Sustainable Development Goals |
topic_facet | Inequality Information and Communication Technologies Machine Learning Poverty Poverty Assessment Poverty Eradication Poverty Mapping Poverty Reduction Poverty, Environment and Development Satellite Data Small Area Estimation Sustainable Development Goals |
url | https://doi.org/10.1596/1813-9450-10175 |
work_keys_str_mv | AT newhousedavid smallareaestimationofmonetarypovertyinmexicousingsatelliteimageryandmachinelearning AT lahiripartha smallareaestimationofmonetarypovertyinmexicousingsatelliteimageryandmachinelearning AT merfeldjoshua smallareaestimationofmonetarypovertyinmexicousingsatelliteimageryandmachinelearning AT ramakrishnananushapudugramam smallareaestimationofmonetarypovertyinmexicousingsatelliteimageryandmachinelearning AT swartztom smallareaestimationofmonetarypovertyinmexicousingsatelliteimageryandmachinelearning |