Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen:
Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts, helping decarbonize hard-to-abate sectors such as heavy industry and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2022
|
Schriftenreihe: | Other Environmental Study
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts, helping decarbonize hard-to-abate sectors such as heavy industry and global transport, while also promoting energy security, sustainable growth, and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition, eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials, such as aluminum, copper, iridium, nickel, platinum, vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen, carbon storage for low-carbon hydrogen, or fuel cells using hydrogen to power transport. This report, a joint product of the World Bank and the Hydrogen Council, examines these three critical areas. Using new data on the material intensities of key technologies, the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition, it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials, innovations in design in order to reduce material intensities, and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint |
Beschreibung: | 1 Online-Ressource |
DOI: | 10.1596/38413 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049079411 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2022 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/38413 |2 doi | |
035 | |a (ZDB-1-WBA)090344049 | ||
035 | |a (OCoLC)1392140285 | ||
035 | |a (DE-599)KEP090344049 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Moreira, Susana |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen |c Susana Moreira |
264 | 1 | |a Washington, D.C |b The World Bank |c 2022 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Other Environmental Study | |
520 | 3 | |a Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts, helping decarbonize hard-to-abate sectors such as heavy industry and global transport, while also promoting energy security, sustainable growth, and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition, eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials, such as aluminum, copper, iridium, nickel, platinum, vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen, carbon storage for low-carbon hydrogen, or fuel cells using hydrogen to power transport. This report, a joint product of the World Bank and the Hydrogen Council, examines these three critical areas. Using new data on the material intensities of key technologies, the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition, it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials, innovations in design in order to reduce material intensities, and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint | |
650 | 4 | |a Climate Change Mitigation and Green House Gases | |
650 | 4 | |a Environment | |
650 | 4 | |a Global Decarbonization | |
650 | 4 | |a Portfolio of Low-Carbon Resources | |
700 | 1 | |a Laing, Timothy James |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/38413 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034341302 |
Datensatz im Suchindex
_version_ | 1812671828392411136 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Moreira, Susana |
author_facet | Moreira, Susana |
author_role | aut |
author_sort | Moreira, Susana |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV049079411 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)090344049 (OCoLC)1392140285 (DE-599)KEP090344049 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/38413 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049079411</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/38413</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)090344049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392140285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP090344049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moreira, Susana</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen</subfield><subfield code="c">Susana Moreira</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Other Environmental Study</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts, helping decarbonize hard-to-abate sectors such as heavy industry and global transport, while also promoting energy security, sustainable growth, and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition, eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials, such as aluminum, copper, iridium, nickel, platinum, vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen, carbon storage for low-carbon hydrogen, or fuel cells using hydrogen to power transport. This report, a joint product of the World Bank and the Hydrogen Council, examines these three critical areas. Using new data on the material intensities of key technologies, the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition, it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials, innovations in design in order to reduce material intensities, and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate Change Mitigation and Green House Gases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Decarbonization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Portfolio of Low-Carbon Resources</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laing, Timothy James</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/38413</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034341302</subfield></datafield></record></collection> |
id | DE-604.BV049079411 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:55Z |
indexdate | 2024-10-12T04:02:46Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034341302 |
oclc_num | 1392140285 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource |
psigel | ZDB-1-WBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The World Bank |
record_format | marc |
series2 | Other Environmental Study |
spellingShingle | Moreira, Susana Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen Climate Change Mitigation and Green House Gases Environment Global Decarbonization Portfolio of Low-Carbon Resources |
title | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen |
title_auth | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen |
title_exact_search | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen |
title_exact_search_txtP | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen |
title_full | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen Susana Moreira |
title_fullStr | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen Susana Moreira |
title_full_unstemmed | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen Susana Moreira |
title_short | Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen |
title_sort | sufficiency sustainability and circularity of critical materials for clean hydrogen |
topic | Climate Change Mitigation and Green House Gases Environment Global Decarbonization Portfolio of Low-Carbon Resources |
topic_facet | Climate Change Mitigation and Green House Gases Environment Global Decarbonization Portfolio of Low-Carbon Resources |
url | https://doi.org/10.1596/38413 |
work_keys_str_mv | AT moreirasusana sufficiencysustainabilityandcircularityofcriticalmaterialsforcleanhydrogen AT laingtimothyjames sufficiencysustainabilityandcircularityofcriticalmaterialsforcleanhydrogen |