Personalized machine learning:
"Machine learning encompasses a broad range of problems ranging from detecting objects in images, finding documents relevant to a given query, or predicting the next element in a sequence, among countless others. Traditional approaches to these problems operate by collecting large, labeled data...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY ; Port Melbourne, VIC ; New Delhi ; Singapore
Cambridge University Press
2022
|
Ausgabe: | First published |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Machine learning encompasses a broad range of problems ranging from detecting objects in images, finding documents relevant to a given query, or predicting the next element in a sequence, among countless others. Traditional approaches to these problems operate by collecting large, labeled datasets for training, uncovering informative features, and mining complex patterns that explain the association between features and labels. Typically, labels are regarded as an underlying 'truth' that should be predicted as accurately as possible"-- |
Beschreibung: | Literaturverzeichnis: Seite 306-321 Includes bibliographical references and index |
Beschreibung: | x, 326 Seiten Illustrationen, Diagramme |
ISBN: | 9781316518908 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049057956 | ||
003 | DE-604 | ||
005 | 20230906 | ||
007 | t | ||
008 | 230719s2022 xxka||| |||| 00||| eng d | ||
020 | |a 9781316518908 |c hardback |9 978-1-316-51890-8 | ||
035 | |a (OCoLC)1333676882 | ||
035 | |a (DE-599)KXP1793559414 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB |a xxu |c XD-US |a at |c XE-AU |a ii |c XB-IN |a si |c XB-SG | ||
049 | |a DE-739 | ||
082 | 0 | |a 006.3/1 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a 54.64 |2 bkl | ||
100 | 1 | |a McAuley, Julian |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1252329431 |4 aut | |
245 | 1 | 0 | |a Personalized machine learning |c Julian McAuley, University of California San Diego |
250 | |a First published | ||
264 | 1 | |a Cambridge ; New York, NY ; Port Melbourne, VIC ; New Delhi ; Singapore |b Cambridge University Press |c 2022 | |
300 | |a x, 326 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverzeichnis: Seite 306-321 | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "Machine learning encompasses a broad range of problems ranging from detecting objects in images, finding documents relevant to a given query, or predicting the next element in a sequence, among countless others. Traditional approaches to these problems operate by collecting large, labeled datasets for training, uncovering informative features, and mining complex patterns that explain the association between features and labels. Typically, labels are regarded as an underlying 'truth' that should be predicted as accurately as possible"-- | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikation |0 (DE-588)4030958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Machine learning | |
653 | 0 | |a COMPUTERS / Database Administration & Management | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 2 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m B:DE-89 |m V:DE-601 |q pdf/application |u https://www.gbv.de/dms/tib-ub-hannover/1793559414.pdf |v 2022-12-03 |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034320155 |
Datensatz im Suchindex
_version_ | 1804185362791137280 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | McAuley, Julian ca. 20./21. Jh |
author_GND | (DE-588)1252329431 |
author_facet | McAuley, Julian ca. 20./21. Jh |
author_role | aut |
author_sort | McAuley, Julian ca. 20./21. Jh |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV049057956 |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1333676882 (DE-599)KXP1793559414 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | First published |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02367nam a2200469 c 4500</leader><controlfield tag="001">BV049057956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230906 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230719s2022 xxka||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316518908</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-316-51890-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1333676882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1793559414</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">at</subfield><subfield code="c">XE-AU</subfield><subfield code="a">ii</subfield><subfield code="c">XB-IN</subfield><subfield code="a">si</subfield><subfield code="c">XB-SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McAuley, Julian</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1252329431</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Personalized machine learning</subfield><subfield code="c">Julian McAuley, University of California San Diego</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First published</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY ; Port Melbourne, VIC ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 326 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite 306-321</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Machine learning encompasses a broad range of problems ranging from detecting objects in images, finding documents relevant to a given query, or predicting the next element in a sequence, among countless others. Traditional approaches to these problems operate by collecting large, labeled datasets for training, uncovering informative features, and mining complex patterns that explain the association between features and labels. Typically, labels are regarded as an underlying 'truth' that should be predicted as accurately as possible"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Database Administration & Management</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-89</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">https://www.gbv.de/dms/tib-ub-hannover/1793559414.pdf</subfield><subfield code="v">2022-12-03</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034320155</subfield></datafield></record></collection> |
id | DE-604.BV049057956 |
illustrated | Illustrated |
index_date | 2024-07-03T22:23:20Z |
indexdate | 2024-07-10T09:54:02Z |
institution | BVB |
isbn | 9781316518908 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034320155 |
oclc_num | 1333676882 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | x, 326 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | McAuley, Julian ca. 20./21. Jh. Verfasser (DE-588)1252329431 aut Personalized machine learning Julian McAuley, University of California San Diego First published Cambridge ; New York, NY ; Port Melbourne, VIC ; New Delhi ; Singapore Cambridge University Press 2022 x, 326 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Literaturverzeichnis: Seite 306-321 Includes bibliographical references and index "Machine learning encompasses a broad range of problems ranging from detecting objects in images, finding documents relevant to a given query, or predicting the next element in a sequence, among countless others. Traditional approaches to these problems operate by collecting large, labeled datasets for training, uncovering informative features, and mining complex patterns that explain the association between features and labels. Typically, labels are regarded as an underlying 'truth' that should be predicted as accurately as possible"-- Data Mining (DE-588)4428654-5 gnd rswk-swf Klassifikation (DE-588)4030958-7 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Machine learning COMPUTERS / Database Administration & Management Maschinelles Lernen (DE-588)4193754-5 s Data Mining (DE-588)4428654-5 s Klassifikation (DE-588)4030958-7 s DE-604 B:DE-89 V:DE-601 pdf/application https://www.gbv.de/dms/tib-ub-hannover/1793559414.pdf 2022-12-03 Inhaltsverzeichnis |
spellingShingle | McAuley, Julian ca. 20./21. Jh Personalized machine learning Data Mining (DE-588)4428654-5 gnd Klassifikation (DE-588)4030958-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4030958-7 (DE-588)4193754-5 |
title | Personalized machine learning |
title_auth | Personalized machine learning |
title_exact_search | Personalized machine learning |
title_exact_search_txtP | Personalized machine learning |
title_full | Personalized machine learning Julian McAuley, University of California San Diego |
title_fullStr | Personalized machine learning Julian McAuley, University of California San Diego |
title_full_unstemmed | Personalized machine learning Julian McAuley, University of California San Diego |
title_short | Personalized machine learning |
title_sort | personalized machine learning |
topic | Data Mining (DE-588)4428654-5 gnd Klassifikation (DE-588)4030958-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Data Mining Klassifikation Maschinelles Lernen |
url | https://www.gbv.de/dms/tib-ub-hannover/1793559414.pdf |
work_keys_str_mv | AT mcauleyjulian personalizedmachinelearning |