Identifying artificial intelligence actors using online data:
This paper uses information collected and provided by GlassAI to analyse the characteristics and activities of companies and universities in Canada, Germany, the United Kingdom and the United States that mention keywords related to Artificial Intelligence (AI) on their websites. The analysis finds t...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2023
|
Schriftenreihe: | OECD Science, Technology and Industry Working Papers
no.2023/01 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This paper uses information collected and provided by GlassAI to analyse the characteristics and activities of companies and universities in Canada, Germany, the United Kingdom and the United States that mention keywords related to Artificial Intelligence (AI) on their websites. The analysis finds that those companies tend to be young and small, mainly operate in the information and communication sector, have AI at the core of their business, and aim to provide customer solutions. It is noteworthy that the types of AI-related activities reported by them vary across sectors. Additionally, although universities are concentrated in and around large cities, this is not necessarily reflected in the intensity of AI-related activities. Taken together, this novel and timely evidence informs the debate on the most recent stages of digital transformation of the economy |
Beschreibung: | 1 Online-Ressource (50 Seiten) |
DOI: | 10.1787/1f5307e7-en |
Internformat
MARC
LEADER | 00000nam a22000001cb4500 | ||
---|---|---|---|
001 | BV049038341 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230706s2023 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1787/1f5307e7-en |2 doi | |
035 | |a (ZDB-13-SOC)092691064 | ||
035 | |a (OCoLC)1390805118 | ||
035 | |a (DE-599)KEP092691064 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-521 |a DE-1028 |a DE-573 |a DE-92 |a DE-898 |a DE-1049 |a DE-861 |a DE-91 |a DE-384 |a DE-473 |a DE-355 |a DE-20 |a DE-824 |a DE-29 |a DE-739 |a DE-188 | ||
100 | 1 | |a Dernis, Hélène |e Verfasser |4 aut | |
245 | 1 | 0 | |a Identifying artificial intelligence actors using online data |c Hélène, Dernis ... [et al] |
264 | 1 | |a Paris |b OECD Publishing |c 2023 | |
300 | |a 1 Online-Ressource (50 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Science, Technology and Industry Working Papers |v no.2023/01 | |
520 | 3 | |a This paper uses information collected and provided by GlassAI to analyse the characteristics and activities of companies and universities in Canada, Germany, the United Kingdom and the United States that mention keywords related to Artificial Intelligence (AI) on their websites. The analysis finds that those companies tend to be young and small, mainly operate in the information and communication sector, have AI at the core of their business, and aim to provide customer solutions. It is noteworthy that the types of AI-related activities reported by them vary across sectors. Additionally, although universities are concentrated in and around large cities, this is not necessarily reflected in the intensity of AI-related activities. Taken together, this novel and timely evidence informs the debate on the most recent stages of digital transformation of the economy | |
650 | 4 | |a Science and Technology | |
650 | 4 | |a Industry and Services | |
700 | 1 | |a Calvino, Flavio |4 ctb | |
700 | 1 | |a Moussiegt, Laurent |4 ctb | |
700 | 1 | |a Nawa, Daisuke |4 ctb | |
700 | 1 | |a Samek, Lea |4 ctb | |
700 | 1 | |a Squicciarini, Mariagrazia |4 ctb | |
856 | 4 | 0 | |u https://doi.org/10.1787/1f5307e7-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034300943 |
Datensatz im Suchindex
_version_ | 1818896670498226176 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dernis, Hélène |
author2 | Calvino, Flavio Moussiegt, Laurent Nawa, Daisuke Samek, Lea Squicciarini, Mariagrazia |
author2_role | ctb ctb ctb ctb ctb |
author2_variant | f c fc l m lm d n dn l s ls m s ms |
author_facet | Dernis, Hélène Calvino, Flavio Moussiegt, Laurent Nawa, Daisuke Samek, Lea Squicciarini, Mariagrazia |
author_role | aut |
author_sort | Dernis, Hélène |
author_variant | h d hd |
building | Verbundindex |
bvnumber | BV049038341 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)092691064 (OCoLC)1390805118 (DE-599)KEP092691064 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/1f5307e7-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001cb4500</leader><controlfield tag="001">BV049038341</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230706s2023 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/1f5307e7-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)092691064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1390805118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP092691064</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-521</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dernis, Hélène</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identifying artificial intelligence actors using online data</subfield><subfield code="c">Hélène, Dernis ... [et al]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (50 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Science, Technology and Industry Working Papers</subfield><subfield code="v">no.2023/01</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This paper uses information collected and provided by GlassAI to analyse the characteristics and activities of companies and universities in Canada, Germany, the United Kingdom and the United States that mention keywords related to Artificial Intelligence (AI) on their websites. The analysis finds that those companies tend to be young and small, mainly operate in the information and communication sector, have AI at the core of their business, and aim to provide customer solutions. It is noteworthy that the types of AI-related activities reported by them vary across sectors. Additionally, although universities are concentrated in and around large cities, this is not necessarily reflected in the intensity of AI-related activities. Taken together, this novel and timely evidence informs the debate on the most recent stages of digital transformation of the economy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science and Technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industry and Services</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calvino, Flavio</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moussiegt, Laurent</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nawa, Daisuke</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samek, Lea</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Squicciarini, Mariagrazia</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/1f5307e7-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034300943</subfield></datafield></record></collection> |
id | DE-604.BV049038341 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:18:26Z |
indexdate | 2024-12-19T19:03:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034300943 |
oclc_num | 1390805118 |
open_access_boolean | 1 |
owner | DE-521 DE-1028 DE-573 DE-92 DE-898 DE-BY-UBR DE-1049 DE-861 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-20 DE-824 DE-29 DE-739 DE-188 |
owner_facet | DE-521 DE-1028 DE-573 DE-92 DE-898 DE-BY-UBR DE-1049 DE-861 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-20 DE-824 DE-29 DE-739 DE-188 |
physical | 1 Online-Ressource (50 Seiten) |
psigel | ZDB-13-SOC |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Science, Technology and Industry Working Papers |
spelling | Dernis, Hélène Verfasser aut Identifying artificial intelligence actors using online data Hélène, Dernis ... [et al] Paris OECD Publishing 2023 1 Online-Ressource (50 Seiten) txt rdacontent c rdamedia cr rdacarrier OECD Science, Technology and Industry Working Papers no.2023/01 This paper uses information collected and provided by GlassAI to analyse the characteristics and activities of companies and universities in Canada, Germany, the United Kingdom and the United States that mention keywords related to Artificial Intelligence (AI) on their websites. The analysis finds that those companies tend to be young and small, mainly operate in the information and communication sector, have AI at the core of their business, and aim to provide customer solutions. It is noteworthy that the types of AI-related activities reported by them vary across sectors. Additionally, although universities are concentrated in and around large cities, this is not necessarily reflected in the intensity of AI-related activities. Taken together, this novel and timely evidence informs the debate on the most recent stages of digital transformation of the economy Science and Technology Industry and Services Calvino, Flavio ctb Moussiegt, Laurent ctb Nawa, Daisuke ctb Samek, Lea ctb Squicciarini, Mariagrazia ctb https://doi.org/10.1787/1f5307e7-en Verlag kostenfrei Volltext |
spellingShingle | Dernis, Hélène Identifying artificial intelligence actors using online data Science and Technology Industry and Services |
title | Identifying artificial intelligence actors using online data |
title_auth | Identifying artificial intelligence actors using online data |
title_exact_search | Identifying artificial intelligence actors using online data |
title_exact_search_txtP | Identifying artificial intelligence actors using online data |
title_full | Identifying artificial intelligence actors using online data Hélène, Dernis ... [et al] |
title_fullStr | Identifying artificial intelligence actors using online data Hélène, Dernis ... [et al] |
title_full_unstemmed | Identifying artificial intelligence actors using online data Hélène, Dernis ... [et al] |
title_short | Identifying artificial intelligence actors using online data |
title_sort | identifying artificial intelligence actors using online data |
topic | Science and Technology Industry and Services |
topic_facet | Science and Technology Industry and Services |
url | https://doi.org/10.1787/1f5307e7-en |
work_keys_str_mv | AT dernishelene identifyingartificialintelligenceactorsusingonlinedata AT calvinoflavio identifyingartificialintelligenceactorsusingonlinedata AT moussiegtlaurent identifyingartificialintelligenceactorsusingonlinedata AT nawadaisuke identifyingartificialintelligenceactorsusingonlinedata AT sameklea identifyingartificialintelligenceactorsusingonlinedata AT squicciarinimariagrazia identifyingartificialintelligenceactorsusingonlinedata |