Artificial Intelligence for Financial Markets: The Polymodel Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Ausgabe: | 1st ed |
Schriftenreihe: | Financial Mathematics and Fintech Series
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (182 Seiten) |
ISBN: | 9783030973193 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049019540 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230626s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783030973193 |9 978-3-030-97319-3 | ||
035 | |a (ZDB-30-PQE)EBC7007392 | ||
035 | |a (ZDB-30-PAD)EBC7007392 | ||
035 | |a (ZDB-89-EBL)EBL7007392 | ||
035 | |a (OCoLC)1323245489 | ||
035 | |a (DE-599)BVBBV049019540 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 332.6015195 | |
100 | 1 | |a Barrau, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Artificial Intelligence for Financial Markets |b The Polymodel Approach |
250 | |a 1st ed | ||
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (182 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Financial Mathematics and Fintech Series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Foreword -- Preface -- Contents -- Chapter 1: Introduction -- 1.1 Financial Market Predictions: A Concise Literature Review -- 1.2 A Simple Model of Portfolio Returns -- 1.3 Plan of the Book -- References -- Chapter 2: Polymodel Theory: An Overview -- 2.1 Introduction -- 2.2 Mathematical Formulation -- 2.3 Epistemological Foundations -- 2.3.1 A Statistical Perspectivism -- 2.3.2 A Phenomenological Approach -- 2.4 Comparison of Polymodels to Multivariate Models -- 2.4.1 Reducing Overfitting -- 2.4.2 Increasing Precision -- 2.4.3 Increasing Robustness -- 2.5 Considerations Raised by Polymodels -- 2.5.1 Aggregation of Predictions -- 2.5.2 Number of Variables Per Elementary Model -- 2.6 Conclusions -- References -- Chapter 3: Estimation Method: The Linear Non-Linear Mixed Model -- 3.1 Introduction -- 3.2 Presentation of the LNLM Model -- 3.2.1 Definition -- 3.2.2 Fitting Procedure -- 3.3 Evaluation Methodology -- 3.4 Results -- 3.4.1 For 126 Observations (Tables 3.1 and 3.2) -- 3.4.2 For 252 Observations (Tables 3.3 and 3.4) -- 3.4.3 For 756 Observations (Tables 3.5 and 3.6) -- 3.4.4 For 1,260 Observations (Tables 3.7 and 3.8) -- 3.4.5 Computation Time (Table 3.9) -- 3.4.6 Interpretations -- 3.5 Conclusions -- References -- Chapter 4: Predictions of Market Returns -- 4.1 Introduction -- 4.2 Data -- 4.3 Systemic Risk Indicator -- 4.3.1 Model Estimation -- 4.3.2 Systemic Risk Indicator Definition -- 4.3.3 Primary Analysis -- 4.3.4 Roots of the Predictive Power -- 4.4 Trading Strategy -- 4.4.1 Methodology -- 4.4.2 Results -- 4.5 Robustness Tests -- 4.5.1 Sensitivity to the Noise Filter -- 4.5.2 Sensitivity to Future Returns Windows -- 4.5.3 Sensitivity to Half-life -- 4.5.4 Sensitivity to Rolling Window Length -- 4.5.5 Asset-Class Specific Performances -- 4.5.6 Sensitivity to Trading Strategy -- 4.6 Conclusions -- References | |
505 | 8 | |a Chapter 5: Predictions of Industry Returns -- 5.1 Introduction -- 5.2 Data -- 5.2.1 Summary Statistics -- 5.3 Methodology -- 5.3.1 Measuring Antifragility -- 5.3.2 Predicting Industry Returns -- 5.4 Results -- 5.4.1 Long/Short Trading Strategy -- 5.4.2 Regressions on Future Returns -- 5.4.3 Comparisons to Classical Factors -- 5.4.4 Separating Concavity and Convexity -- 5.4.5 Separating Positive and Negative Market Returns -- 5.5 Robustness Tests -- 5.5.1 Stability of the Signal -- 5.5.2 Sensitivity to Hyper-Parameters -- 5.6 Conclusions -- References -- Chapter 6: Predictions of Specific Returns -- 6.1 Introduction -- 6.2 Methodological Foundations -- 6.2.1 Data -- 6.2.2 Time-series Predictions, Cross-sectional Portfolio Construction -- 6.2.3 Subtracting the Average Return -- 6.3 Predictions Selection -- 6.3.1 Root Mean Squared Error Filter Evaluation -- 6.3.2 p-value Filter Evaluation -- 6.3.3 Bayesian Information Criterion Filter Evaluation -- 6.3.4 Selection Using Dynamic Optimal Filtering -- 6.4 Aggregation of Predictions -- 6.4.1 Prediction Aggregation Using Bayesian Model Averaging -- 6.4.2 Prediction Aggregation Using Added Value Averaging -- 6.4.3 Uncertainty of Aggregate Predictions -- 6.5 Trading Strategy -- 6.5.1 Methodology -- 6.5.2 Performance -- 6.5.3 Significance of the Methods -- 6.6 Robustness Tests -- 6.6.1 Correlations with Standard Factors -- 6.6.2 Sensitivity to the Filter Regression Window -- 6.6.3 Stability of the Performance -- 6.6.4 Sensitivity to the Believability Measure Window -- 6.6.5 Sensitivity to the Originality Measure Window -- 6.6.6 Unaccounted Parameter Sensitivities -- 6.7 Conclusions -- References -- Chapter 7: Genetic Algorithm-Based Combination of Predictions -- 7.1 Introduction -- 7.2 Analysis of Strategies -- 7.2.1 Predictions of Market Returns -- 7.2.2 Predictions of Industry Returns | |
505 | 8 | |a 7.2.3 Predictions of Specific Returns -- 7.2.4 Correlation Analysis -- 7.3 Risk Parity Combination -- 7.3.1 Introducing Risk Parity -- 7.3.2 Transaction Costs Matter -- 7.3.3 Ex-ante Optimal Reduction of the Transaction Costs -- 7.4 Genetic Algorithm-Based Combinations -- 7.4.1 Methodology -- 7.4.2 Results -- 7.5 Robustness Tests -- 7.5.1 Mutation Probability -- 7.5.2 Number of Chromosomes -- 7.5.3 Number of Epochs -- 7.5.4 Seed -- 7.5.5 Optimal Trading Rate Window -- 7.6 Conclusions -- References -- Chapter 8: Conclusions -- Appendix -- Representative RMSE Distributions per Stock Index -- Market Timed Portfolio and Systemic Risk Indicator per Stock Index -- Industry Buckets Summary Statistics -- AFI Scores per Industry over Time | |
650 | 4 | |a Artificial intelligence-Financial applications | |
700 | 1 | |a Douady, Raphael |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Barrau, Thomas |t Artificial Intelligence for Financial Markets |d Cham : Springer International Publishing AG,c2022 |z 9783030973186 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034282447 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7007392 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185295736799232 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Barrau, Thomas |
author_facet | Barrau, Thomas |
author_role | aut |
author_sort | Barrau, Thomas |
author_variant | t b tb |
building | Verbundindex |
bvnumber | BV049019540 |
collection | ZDB-30-PQE |
contents | Intro -- Foreword -- Preface -- Contents -- Chapter 1: Introduction -- 1.1 Financial Market Predictions: A Concise Literature Review -- 1.2 A Simple Model of Portfolio Returns -- 1.3 Plan of the Book -- References -- Chapter 2: Polymodel Theory: An Overview -- 2.1 Introduction -- 2.2 Mathematical Formulation -- 2.3 Epistemological Foundations -- 2.3.1 A Statistical Perspectivism -- 2.3.2 A Phenomenological Approach -- 2.4 Comparison of Polymodels to Multivariate Models -- 2.4.1 Reducing Overfitting -- 2.4.2 Increasing Precision -- 2.4.3 Increasing Robustness -- 2.5 Considerations Raised by Polymodels -- 2.5.1 Aggregation of Predictions -- 2.5.2 Number of Variables Per Elementary Model -- 2.6 Conclusions -- References -- Chapter 3: Estimation Method: The Linear Non-Linear Mixed Model -- 3.1 Introduction -- 3.2 Presentation of the LNLM Model -- 3.2.1 Definition -- 3.2.2 Fitting Procedure -- 3.3 Evaluation Methodology -- 3.4 Results -- 3.4.1 For 126 Observations (Tables 3.1 and 3.2) -- 3.4.2 For 252 Observations (Tables 3.3 and 3.4) -- 3.4.3 For 756 Observations (Tables 3.5 and 3.6) -- 3.4.4 For 1,260 Observations (Tables 3.7 and 3.8) -- 3.4.5 Computation Time (Table 3.9) -- 3.4.6 Interpretations -- 3.5 Conclusions -- References -- Chapter 4: Predictions of Market Returns -- 4.1 Introduction -- 4.2 Data -- 4.3 Systemic Risk Indicator -- 4.3.1 Model Estimation -- 4.3.2 Systemic Risk Indicator Definition -- 4.3.3 Primary Analysis -- 4.3.4 Roots of the Predictive Power -- 4.4 Trading Strategy -- 4.4.1 Methodology -- 4.4.2 Results -- 4.5 Robustness Tests -- 4.5.1 Sensitivity to the Noise Filter -- 4.5.2 Sensitivity to Future Returns Windows -- 4.5.3 Sensitivity to Half-life -- 4.5.4 Sensitivity to Rolling Window Length -- 4.5.5 Asset-Class Specific Performances -- 4.5.6 Sensitivity to Trading Strategy -- 4.6 Conclusions -- References Chapter 5: Predictions of Industry Returns -- 5.1 Introduction -- 5.2 Data -- 5.2.1 Summary Statistics -- 5.3 Methodology -- 5.3.1 Measuring Antifragility -- 5.3.2 Predicting Industry Returns -- 5.4 Results -- 5.4.1 Long/Short Trading Strategy -- 5.4.2 Regressions on Future Returns -- 5.4.3 Comparisons to Classical Factors -- 5.4.4 Separating Concavity and Convexity -- 5.4.5 Separating Positive and Negative Market Returns -- 5.5 Robustness Tests -- 5.5.1 Stability of the Signal -- 5.5.2 Sensitivity to Hyper-Parameters -- 5.6 Conclusions -- References -- Chapter 6: Predictions of Specific Returns -- 6.1 Introduction -- 6.2 Methodological Foundations -- 6.2.1 Data -- 6.2.2 Time-series Predictions, Cross-sectional Portfolio Construction -- 6.2.3 Subtracting the Average Return -- 6.3 Predictions Selection -- 6.3.1 Root Mean Squared Error Filter Evaluation -- 6.3.2 p-value Filter Evaluation -- 6.3.3 Bayesian Information Criterion Filter Evaluation -- 6.3.4 Selection Using Dynamic Optimal Filtering -- 6.4 Aggregation of Predictions -- 6.4.1 Prediction Aggregation Using Bayesian Model Averaging -- 6.4.2 Prediction Aggregation Using Added Value Averaging -- 6.4.3 Uncertainty of Aggregate Predictions -- 6.5 Trading Strategy -- 6.5.1 Methodology -- 6.5.2 Performance -- 6.5.3 Significance of the Methods -- 6.6 Robustness Tests -- 6.6.1 Correlations with Standard Factors -- 6.6.2 Sensitivity to the Filter Regression Window -- 6.6.3 Stability of the Performance -- 6.6.4 Sensitivity to the Believability Measure Window -- 6.6.5 Sensitivity to the Originality Measure Window -- 6.6.6 Unaccounted Parameter Sensitivities -- 6.7 Conclusions -- References -- Chapter 7: Genetic Algorithm-Based Combination of Predictions -- 7.1 Introduction -- 7.2 Analysis of Strategies -- 7.2.1 Predictions of Market Returns -- 7.2.2 Predictions of Industry Returns 7.2.3 Predictions of Specific Returns -- 7.2.4 Correlation Analysis -- 7.3 Risk Parity Combination -- 7.3.1 Introducing Risk Parity -- 7.3.2 Transaction Costs Matter -- 7.3.3 Ex-ante Optimal Reduction of the Transaction Costs -- 7.4 Genetic Algorithm-Based Combinations -- 7.4.1 Methodology -- 7.4.2 Results -- 7.5 Robustness Tests -- 7.5.1 Mutation Probability -- 7.5.2 Number of Chromosomes -- 7.5.3 Number of Epochs -- 7.5.4 Seed -- 7.5.5 Optimal Trading Rate Window -- 7.6 Conclusions -- References -- Chapter 8: Conclusions -- Appendix -- Representative RMSE Distributions per Stock Index -- Market Timed Portfolio and Systemic Risk Indicator per Stock Index -- Industry Buckets Summary Statistics -- AFI Scores per Industry over Time |
ctrlnum | (ZDB-30-PQE)EBC7007392 (ZDB-30-PAD)EBC7007392 (ZDB-89-EBL)EBL7007392 (OCoLC)1323245489 (DE-599)BVBBV049019540 |
dewey-full | 332.6015195 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.6015195 |
dewey-search | 332.6015195 |
dewey-sort | 3332.6015195 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06060nmm a2200445zc 4500</leader><controlfield tag="001">BV049019540</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230626s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030973193</subfield><subfield code="9">978-3-030-97319-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7007392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7007392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7007392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1323245489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049019540</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.6015195</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barrau, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial Intelligence for Financial Markets</subfield><subfield code="b">The Polymodel Approach</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (182 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Financial Mathematics and Fintech Series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Foreword -- Preface -- Contents -- Chapter 1: Introduction -- 1.1 Financial Market Predictions: A Concise Literature Review -- 1.2 A Simple Model of Portfolio Returns -- 1.3 Plan of the Book -- References -- Chapter 2: Polymodel Theory: An Overview -- 2.1 Introduction -- 2.2 Mathematical Formulation -- 2.3 Epistemological Foundations -- 2.3.1 A Statistical Perspectivism -- 2.3.2 A Phenomenological Approach -- 2.4 Comparison of Polymodels to Multivariate Models -- 2.4.1 Reducing Overfitting -- 2.4.2 Increasing Precision -- 2.4.3 Increasing Robustness -- 2.5 Considerations Raised by Polymodels -- 2.5.1 Aggregation of Predictions -- 2.5.2 Number of Variables Per Elementary Model -- 2.6 Conclusions -- References -- Chapter 3: Estimation Method: The Linear Non-Linear Mixed Model -- 3.1 Introduction -- 3.2 Presentation of the LNLM Model -- 3.2.1 Definition -- 3.2.2 Fitting Procedure -- 3.3 Evaluation Methodology -- 3.4 Results -- 3.4.1 For 126 Observations (Tables 3.1 and 3.2) -- 3.4.2 For 252 Observations (Tables 3.3 and 3.4) -- 3.4.3 For 756 Observations (Tables 3.5 and 3.6) -- 3.4.4 For 1,260 Observations (Tables 3.7 and 3.8) -- 3.4.5 Computation Time (Table 3.9) -- 3.4.6 Interpretations -- 3.5 Conclusions -- References -- Chapter 4: Predictions of Market Returns -- 4.1 Introduction -- 4.2 Data -- 4.3 Systemic Risk Indicator -- 4.3.1 Model Estimation -- 4.3.2 Systemic Risk Indicator Definition -- 4.3.3 Primary Analysis -- 4.3.4 Roots of the Predictive Power -- 4.4 Trading Strategy -- 4.4.1 Methodology -- 4.4.2 Results -- 4.5 Robustness Tests -- 4.5.1 Sensitivity to the Noise Filter -- 4.5.2 Sensitivity to Future Returns Windows -- 4.5.3 Sensitivity to Half-life -- 4.5.4 Sensitivity to Rolling Window Length -- 4.5.5 Asset-Class Specific Performances -- 4.5.6 Sensitivity to Trading Strategy -- 4.6 Conclusions -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 5: Predictions of Industry Returns -- 5.1 Introduction -- 5.2 Data -- 5.2.1 Summary Statistics -- 5.3 Methodology -- 5.3.1 Measuring Antifragility -- 5.3.2 Predicting Industry Returns -- 5.4 Results -- 5.4.1 Long/Short Trading Strategy -- 5.4.2 Regressions on Future Returns -- 5.4.3 Comparisons to Classical Factors -- 5.4.4 Separating Concavity and Convexity -- 5.4.5 Separating Positive and Negative Market Returns -- 5.5 Robustness Tests -- 5.5.1 Stability of the Signal -- 5.5.2 Sensitivity to Hyper-Parameters -- 5.6 Conclusions -- References -- Chapter 6: Predictions of Specific Returns -- 6.1 Introduction -- 6.2 Methodological Foundations -- 6.2.1 Data -- 6.2.2 Time-series Predictions, Cross-sectional Portfolio Construction -- 6.2.3 Subtracting the Average Return -- 6.3 Predictions Selection -- 6.3.1 Root Mean Squared Error Filter Evaluation -- 6.3.2 p-value Filter Evaluation -- 6.3.3 Bayesian Information Criterion Filter Evaluation -- 6.3.4 Selection Using Dynamic Optimal Filtering -- 6.4 Aggregation of Predictions -- 6.4.1 Prediction Aggregation Using Bayesian Model Averaging -- 6.4.2 Prediction Aggregation Using Added Value Averaging -- 6.4.3 Uncertainty of Aggregate Predictions -- 6.5 Trading Strategy -- 6.5.1 Methodology -- 6.5.2 Performance -- 6.5.3 Significance of the Methods -- 6.6 Robustness Tests -- 6.6.1 Correlations with Standard Factors -- 6.6.2 Sensitivity to the Filter Regression Window -- 6.6.3 Stability of the Performance -- 6.6.4 Sensitivity to the Believability Measure Window -- 6.6.5 Sensitivity to the Originality Measure Window -- 6.6.6 Unaccounted Parameter Sensitivities -- 6.7 Conclusions -- References -- Chapter 7: Genetic Algorithm-Based Combination of Predictions -- 7.1 Introduction -- 7.2 Analysis of Strategies -- 7.2.1 Predictions of Market Returns -- 7.2.2 Predictions of Industry Returns</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2.3 Predictions of Specific Returns -- 7.2.4 Correlation Analysis -- 7.3 Risk Parity Combination -- 7.3.1 Introducing Risk Parity -- 7.3.2 Transaction Costs Matter -- 7.3.3 Ex-ante Optimal Reduction of the Transaction Costs -- 7.4 Genetic Algorithm-Based Combinations -- 7.4.1 Methodology -- 7.4.2 Results -- 7.5 Robustness Tests -- 7.5.1 Mutation Probability -- 7.5.2 Number of Chromosomes -- 7.5.3 Number of Epochs -- 7.5.4 Seed -- 7.5.5 Optimal Trading Rate Window -- 7.6 Conclusions -- References -- Chapter 8: Conclusions -- Appendix -- Representative RMSE Distributions per Stock Index -- Market Timed Portfolio and Systemic Risk Indicator per Stock Index -- Industry Buckets Summary Statistics -- AFI Scores per Industry over Time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence-Financial applications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Douady, Raphael</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Barrau, Thomas</subfield><subfield code="t">Artificial Intelligence for Financial Markets</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030973186</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034282447</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7007392</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049019540 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:13:39Z |
indexdate | 2024-07-10T09:52:58Z |
institution | BVB |
isbn | 9783030973193 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034282447 |
oclc_num | 1323245489 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (182 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Financial Mathematics and Fintech Series |
spelling | Barrau, Thomas Verfasser aut Artificial Intelligence for Financial Markets The Polymodel Approach 1st ed Cham Springer International Publishing AG 2022 ©2022 1 Online-Ressource (182 Seiten) txt rdacontent c rdamedia cr rdacarrier Financial Mathematics and Fintech Series Description based on publisher supplied metadata and other sources Intro -- Foreword -- Preface -- Contents -- Chapter 1: Introduction -- 1.1 Financial Market Predictions: A Concise Literature Review -- 1.2 A Simple Model of Portfolio Returns -- 1.3 Plan of the Book -- References -- Chapter 2: Polymodel Theory: An Overview -- 2.1 Introduction -- 2.2 Mathematical Formulation -- 2.3 Epistemological Foundations -- 2.3.1 A Statistical Perspectivism -- 2.3.2 A Phenomenological Approach -- 2.4 Comparison of Polymodels to Multivariate Models -- 2.4.1 Reducing Overfitting -- 2.4.2 Increasing Precision -- 2.4.3 Increasing Robustness -- 2.5 Considerations Raised by Polymodels -- 2.5.1 Aggregation of Predictions -- 2.5.2 Number of Variables Per Elementary Model -- 2.6 Conclusions -- References -- Chapter 3: Estimation Method: The Linear Non-Linear Mixed Model -- 3.1 Introduction -- 3.2 Presentation of the LNLM Model -- 3.2.1 Definition -- 3.2.2 Fitting Procedure -- 3.3 Evaluation Methodology -- 3.4 Results -- 3.4.1 For 126 Observations (Tables 3.1 and 3.2) -- 3.4.2 For 252 Observations (Tables 3.3 and 3.4) -- 3.4.3 For 756 Observations (Tables 3.5 and 3.6) -- 3.4.4 For 1,260 Observations (Tables 3.7 and 3.8) -- 3.4.5 Computation Time (Table 3.9) -- 3.4.6 Interpretations -- 3.5 Conclusions -- References -- Chapter 4: Predictions of Market Returns -- 4.1 Introduction -- 4.2 Data -- 4.3 Systemic Risk Indicator -- 4.3.1 Model Estimation -- 4.3.2 Systemic Risk Indicator Definition -- 4.3.3 Primary Analysis -- 4.3.4 Roots of the Predictive Power -- 4.4 Trading Strategy -- 4.4.1 Methodology -- 4.4.2 Results -- 4.5 Robustness Tests -- 4.5.1 Sensitivity to the Noise Filter -- 4.5.2 Sensitivity to Future Returns Windows -- 4.5.3 Sensitivity to Half-life -- 4.5.4 Sensitivity to Rolling Window Length -- 4.5.5 Asset-Class Specific Performances -- 4.5.6 Sensitivity to Trading Strategy -- 4.6 Conclusions -- References Chapter 5: Predictions of Industry Returns -- 5.1 Introduction -- 5.2 Data -- 5.2.1 Summary Statistics -- 5.3 Methodology -- 5.3.1 Measuring Antifragility -- 5.3.2 Predicting Industry Returns -- 5.4 Results -- 5.4.1 Long/Short Trading Strategy -- 5.4.2 Regressions on Future Returns -- 5.4.3 Comparisons to Classical Factors -- 5.4.4 Separating Concavity and Convexity -- 5.4.5 Separating Positive and Negative Market Returns -- 5.5 Robustness Tests -- 5.5.1 Stability of the Signal -- 5.5.2 Sensitivity to Hyper-Parameters -- 5.6 Conclusions -- References -- Chapter 6: Predictions of Specific Returns -- 6.1 Introduction -- 6.2 Methodological Foundations -- 6.2.1 Data -- 6.2.2 Time-series Predictions, Cross-sectional Portfolio Construction -- 6.2.3 Subtracting the Average Return -- 6.3 Predictions Selection -- 6.3.1 Root Mean Squared Error Filter Evaluation -- 6.3.2 p-value Filter Evaluation -- 6.3.3 Bayesian Information Criterion Filter Evaluation -- 6.3.4 Selection Using Dynamic Optimal Filtering -- 6.4 Aggregation of Predictions -- 6.4.1 Prediction Aggregation Using Bayesian Model Averaging -- 6.4.2 Prediction Aggregation Using Added Value Averaging -- 6.4.3 Uncertainty of Aggregate Predictions -- 6.5 Trading Strategy -- 6.5.1 Methodology -- 6.5.2 Performance -- 6.5.3 Significance of the Methods -- 6.6 Robustness Tests -- 6.6.1 Correlations with Standard Factors -- 6.6.2 Sensitivity to the Filter Regression Window -- 6.6.3 Stability of the Performance -- 6.6.4 Sensitivity to the Believability Measure Window -- 6.6.5 Sensitivity to the Originality Measure Window -- 6.6.6 Unaccounted Parameter Sensitivities -- 6.7 Conclusions -- References -- Chapter 7: Genetic Algorithm-Based Combination of Predictions -- 7.1 Introduction -- 7.2 Analysis of Strategies -- 7.2.1 Predictions of Market Returns -- 7.2.2 Predictions of Industry Returns 7.2.3 Predictions of Specific Returns -- 7.2.4 Correlation Analysis -- 7.3 Risk Parity Combination -- 7.3.1 Introducing Risk Parity -- 7.3.2 Transaction Costs Matter -- 7.3.3 Ex-ante Optimal Reduction of the Transaction Costs -- 7.4 Genetic Algorithm-Based Combinations -- 7.4.1 Methodology -- 7.4.2 Results -- 7.5 Robustness Tests -- 7.5.1 Mutation Probability -- 7.5.2 Number of Chromosomes -- 7.5.3 Number of Epochs -- 7.5.4 Seed -- 7.5.5 Optimal Trading Rate Window -- 7.6 Conclusions -- References -- Chapter 8: Conclusions -- Appendix -- Representative RMSE Distributions per Stock Index -- Market Timed Portfolio and Systemic Risk Indicator per Stock Index -- Industry Buckets Summary Statistics -- AFI Scores per Industry over Time Artificial intelligence-Financial applications Douady, Raphael Sonstige oth Erscheint auch als Druck-Ausgabe Barrau, Thomas Artificial Intelligence for Financial Markets Cham : Springer International Publishing AG,c2022 9783030973186 |
spellingShingle | Barrau, Thomas Artificial Intelligence for Financial Markets The Polymodel Approach Intro -- Foreword -- Preface -- Contents -- Chapter 1: Introduction -- 1.1 Financial Market Predictions: A Concise Literature Review -- 1.2 A Simple Model of Portfolio Returns -- 1.3 Plan of the Book -- References -- Chapter 2: Polymodel Theory: An Overview -- 2.1 Introduction -- 2.2 Mathematical Formulation -- 2.3 Epistemological Foundations -- 2.3.1 A Statistical Perspectivism -- 2.3.2 A Phenomenological Approach -- 2.4 Comparison of Polymodels to Multivariate Models -- 2.4.1 Reducing Overfitting -- 2.4.2 Increasing Precision -- 2.4.3 Increasing Robustness -- 2.5 Considerations Raised by Polymodels -- 2.5.1 Aggregation of Predictions -- 2.5.2 Number of Variables Per Elementary Model -- 2.6 Conclusions -- References -- Chapter 3: Estimation Method: The Linear Non-Linear Mixed Model -- 3.1 Introduction -- 3.2 Presentation of the LNLM Model -- 3.2.1 Definition -- 3.2.2 Fitting Procedure -- 3.3 Evaluation Methodology -- 3.4 Results -- 3.4.1 For 126 Observations (Tables 3.1 and 3.2) -- 3.4.2 For 252 Observations (Tables 3.3 and 3.4) -- 3.4.3 For 756 Observations (Tables 3.5 and 3.6) -- 3.4.4 For 1,260 Observations (Tables 3.7 and 3.8) -- 3.4.5 Computation Time (Table 3.9) -- 3.4.6 Interpretations -- 3.5 Conclusions -- References -- Chapter 4: Predictions of Market Returns -- 4.1 Introduction -- 4.2 Data -- 4.3 Systemic Risk Indicator -- 4.3.1 Model Estimation -- 4.3.2 Systemic Risk Indicator Definition -- 4.3.3 Primary Analysis -- 4.3.4 Roots of the Predictive Power -- 4.4 Trading Strategy -- 4.4.1 Methodology -- 4.4.2 Results -- 4.5 Robustness Tests -- 4.5.1 Sensitivity to the Noise Filter -- 4.5.2 Sensitivity to Future Returns Windows -- 4.5.3 Sensitivity to Half-life -- 4.5.4 Sensitivity to Rolling Window Length -- 4.5.5 Asset-Class Specific Performances -- 4.5.6 Sensitivity to Trading Strategy -- 4.6 Conclusions -- References Chapter 5: Predictions of Industry Returns -- 5.1 Introduction -- 5.2 Data -- 5.2.1 Summary Statistics -- 5.3 Methodology -- 5.3.1 Measuring Antifragility -- 5.3.2 Predicting Industry Returns -- 5.4 Results -- 5.4.1 Long/Short Trading Strategy -- 5.4.2 Regressions on Future Returns -- 5.4.3 Comparisons to Classical Factors -- 5.4.4 Separating Concavity and Convexity -- 5.4.5 Separating Positive and Negative Market Returns -- 5.5 Robustness Tests -- 5.5.1 Stability of the Signal -- 5.5.2 Sensitivity to Hyper-Parameters -- 5.6 Conclusions -- References -- Chapter 6: Predictions of Specific Returns -- 6.1 Introduction -- 6.2 Methodological Foundations -- 6.2.1 Data -- 6.2.2 Time-series Predictions, Cross-sectional Portfolio Construction -- 6.2.3 Subtracting the Average Return -- 6.3 Predictions Selection -- 6.3.1 Root Mean Squared Error Filter Evaluation -- 6.3.2 p-value Filter Evaluation -- 6.3.3 Bayesian Information Criterion Filter Evaluation -- 6.3.4 Selection Using Dynamic Optimal Filtering -- 6.4 Aggregation of Predictions -- 6.4.1 Prediction Aggregation Using Bayesian Model Averaging -- 6.4.2 Prediction Aggregation Using Added Value Averaging -- 6.4.3 Uncertainty of Aggregate Predictions -- 6.5 Trading Strategy -- 6.5.1 Methodology -- 6.5.2 Performance -- 6.5.3 Significance of the Methods -- 6.6 Robustness Tests -- 6.6.1 Correlations with Standard Factors -- 6.6.2 Sensitivity to the Filter Regression Window -- 6.6.3 Stability of the Performance -- 6.6.4 Sensitivity to the Believability Measure Window -- 6.6.5 Sensitivity to the Originality Measure Window -- 6.6.6 Unaccounted Parameter Sensitivities -- 6.7 Conclusions -- References -- Chapter 7: Genetic Algorithm-Based Combination of Predictions -- 7.1 Introduction -- 7.2 Analysis of Strategies -- 7.2.1 Predictions of Market Returns -- 7.2.2 Predictions of Industry Returns 7.2.3 Predictions of Specific Returns -- 7.2.4 Correlation Analysis -- 7.3 Risk Parity Combination -- 7.3.1 Introducing Risk Parity -- 7.3.2 Transaction Costs Matter -- 7.3.3 Ex-ante Optimal Reduction of the Transaction Costs -- 7.4 Genetic Algorithm-Based Combinations -- 7.4.1 Methodology -- 7.4.2 Results -- 7.5 Robustness Tests -- 7.5.1 Mutation Probability -- 7.5.2 Number of Chromosomes -- 7.5.3 Number of Epochs -- 7.5.4 Seed -- 7.5.5 Optimal Trading Rate Window -- 7.6 Conclusions -- References -- Chapter 8: Conclusions -- Appendix -- Representative RMSE Distributions per Stock Index -- Market Timed Portfolio and Systemic Risk Indicator per Stock Index -- Industry Buckets Summary Statistics -- AFI Scores per Industry over Time Artificial intelligence-Financial applications |
title | Artificial Intelligence for Financial Markets The Polymodel Approach |
title_auth | Artificial Intelligence for Financial Markets The Polymodel Approach |
title_exact_search | Artificial Intelligence for Financial Markets The Polymodel Approach |
title_exact_search_txtP | Artificial Intelligence for Financial Markets The Polymodel Approach |
title_full | Artificial Intelligence for Financial Markets The Polymodel Approach |
title_fullStr | Artificial Intelligence for Financial Markets The Polymodel Approach |
title_full_unstemmed | Artificial Intelligence for Financial Markets The Polymodel Approach |
title_short | Artificial Intelligence for Financial Markets |
title_sort | artificial intelligence for financial markets the polymodel approach |
title_sub | The Polymodel Approach |
topic | Artificial intelligence-Financial applications |
topic_facet | Artificial intelligence-Financial applications |
work_keys_str_mv | AT barrauthomas artificialintelligenceforfinancialmarketsthepolymodelapproach AT douadyraphael artificialintelligenceforfinancialmarketsthepolymodelapproach |