The sequential quadratic hamiltonian method: solving optimal control problems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Abingdon
CRC Press
2023
|
Schriftenreihe: | Numerical analysis and scientific computing series
|
Schlagworte: | |
Online-Zugang: | DE-20 Volltext |
Beschreibung: | 1 Online-Ressource (xv, 250 Seiten) |
ISBN: | 9781003152620 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048998579 | ||
003 | DE-604 | ||
005 | 20230619 | ||
007 | cr|uuu---uuuuu | ||
008 | 230613s2023 xx o|||| 00||| eng d | ||
020 | |a 9781003152620 |9 978-1-00-315262-0 | ||
035 | |a (OCoLC)1385289433 | ||
035 | |a (DE-599)BVBBV048998579 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 | ||
084 | |a SK 880 |0 (DE-625)143266: |2 rvk | ||
100 | 1 | |a Borzì, Alfio |d 1965- |e Verfasser |0 (DE-588)1019221909 |4 aut | |
245 | 1 | 0 | |a The sequential quadratic hamiltonian method |b solving optimal control problems |c Alfio Borzì (University of Würzburg, Germany) |
264 | 1 | |a Abingdon |b CRC Press |c 2023 | |
300 | |a 1 Online-Ressource (xv, 250 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Numerical analysis and scientific computing series | |
650 | 0 | 7 | |a Hamilton-Funktion |0 (DE-588)4323257-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sequenzielle quadratische Optimierung |0 (DE-588)4451045-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nash-Gleichgewicht |0 (DE-588)4171190-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pontrjagin-Maximumprinzip |0 (DE-588)4130753-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |D s |
689 | 0 | 1 | |a Hamilton-Funktion |0 (DE-588)4323257-7 |D s |
689 | 0 | 2 | |a Nash-Gleichgewicht |0 (DE-588)4171190-7 |D s |
689 | 0 | 3 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 4 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 0 | 5 | |a Pontrjagin-Maximumprinzip |0 (DE-588)4130753-7 |D s |
689 | 0 | 6 | |a Sequenzielle quadratische Optimierung |0 (DE-588)4451045-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-367-71552-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-367-71560-1 |
856 | 4 | 0 | |u https://www.taylorfrancis.com/books/9781003152620 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-7-TFC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034261792 | |
966 | e | |u https://www.taylorfrancis.com/books/9781003152620 |l DE-20 |p ZDB-7-TFC |q UBW_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1820882866013208576 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Borzì, Alfio 1965- |
author_GND | (DE-588)1019221909 |
author_facet | Borzì, Alfio 1965- |
author_role | aut |
author_sort | Borzì, Alfio 1965- |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV048998579 |
classification_rvk | SK 880 |
collection | ZDB-7-TFC |
ctrlnum | (OCoLC)1385289433 (DE-599)BVBBV048998579 |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048998579</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230619</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230613s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003152620</subfield><subfield code="9">978-1-00-315262-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1385289433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048998579</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borzì, Alfio</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1019221909</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The sequential quadratic hamiltonian method</subfield><subfield code="b">solving optimal control problems</subfield><subfield code="c">Alfio Borzì (University of Würzburg, Germany)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Abingdon</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 250 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Numerical analysis and scientific computing series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Funktion</subfield><subfield code="0">(DE-588)4323257-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sequenzielle quadratische Optimierung</subfield><subfield code="0">(DE-588)4451045-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nash-Gleichgewicht</subfield><subfield code="0">(DE-588)4171190-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pontrjagin-Maximumprinzip</subfield><subfield code="0">(DE-588)4130753-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hamilton-Funktion</subfield><subfield code="0">(DE-588)4323257-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nash-Gleichgewicht</subfield><subfield code="0">(DE-588)4171190-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Pontrjagin-Maximumprinzip</subfield><subfield code="0">(DE-588)4130753-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Sequenzielle quadratische Optimierung</subfield><subfield code="0">(DE-588)4451045-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-71552-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-367-71560-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.taylorfrancis.com/books/9781003152620</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034261792</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.taylorfrancis.com/books/9781003152620</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048998579 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:08:58Z |
indexdate | 2025-01-10T17:13:42Z |
institution | BVB |
isbn | 9781003152620 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034261792 |
oclc_num | 1385289433 |
open_access_boolean | |
owner | DE-20 |
owner_facet | DE-20 |
physical | 1 Online-Ressource (xv, 250 Seiten) |
psigel | ZDB-7-TFC ZDB-7-TFC UBW_Einzelkauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | CRC Press |
record_format | marc |
series2 | Numerical analysis and scientific computing series |
spelling | Borzì, Alfio 1965- Verfasser (DE-588)1019221909 aut The sequential quadratic hamiltonian method solving optimal control problems Alfio Borzì (University of Würzburg, Germany) Abingdon CRC Press 2023 1 Online-Ressource (xv, 250 Seiten) txt rdacontent c rdamedia cr rdacarrier Numerical analysis and scientific computing series Hamilton-Funktion (DE-588)4323257-7 gnd rswk-swf Sequenzielle quadratische Optimierung (DE-588)4451045-7 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Fokker-Planck-Gleichung (DE-588)4126333-9 gnd rswk-swf Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Nash-Gleichgewicht (DE-588)4171190-7 gnd rswk-swf Pontrjagin-Maximumprinzip (DE-588)4130753-7 gnd rswk-swf Fokker-Planck-Gleichung (DE-588)4126333-9 s Hamilton-Funktion (DE-588)4323257-7 s Nash-Gleichgewicht (DE-588)4171190-7 s Neuronales Netz (DE-588)4226127-2 s Optimale Kontrolle (DE-588)4121428-6 s Pontrjagin-Maximumprinzip (DE-588)4130753-7 s Sequenzielle quadratische Optimierung (DE-588)4451045-7 s DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-0-367-71552-6 Erscheint auch als Druck-Ausgabe, Paperback 978-0-367-71560-1 https://www.taylorfrancis.com/books/9781003152620 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Borzì, Alfio 1965- The sequential quadratic hamiltonian method solving optimal control problems Hamilton-Funktion (DE-588)4323257-7 gnd Sequenzielle quadratische Optimierung (DE-588)4451045-7 gnd Neuronales Netz (DE-588)4226127-2 gnd Fokker-Planck-Gleichung (DE-588)4126333-9 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Nash-Gleichgewicht (DE-588)4171190-7 gnd Pontrjagin-Maximumprinzip (DE-588)4130753-7 gnd |
subject_GND | (DE-588)4323257-7 (DE-588)4451045-7 (DE-588)4226127-2 (DE-588)4126333-9 (DE-588)4121428-6 (DE-588)4171190-7 (DE-588)4130753-7 |
title | The sequential quadratic hamiltonian method solving optimal control problems |
title_auth | The sequential quadratic hamiltonian method solving optimal control problems |
title_exact_search | The sequential quadratic hamiltonian method solving optimal control problems |
title_exact_search_txtP | The sequential quadratic hamiltonian method solving optimal control problems |
title_full | The sequential quadratic hamiltonian method solving optimal control problems Alfio Borzì (University of Würzburg, Germany) |
title_fullStr | The sequential quadratic hamiltonian method solving optimal control problems Alfio Borzì (University of Würzburg, Germany) |
title_full_unstemmed | The sequential quadratic hamiltonian method solving optimal control problems Alfio Borzì (University of Würzburg, Germany) |
title_short | The sequential quadratic hamiltonian method |
title_sort | the sequential quadratic hamiltonian method solving optimal control problems |
title_sub | solving optimal control problems |
topic | Hamilton-Funktion (DE-588)4323257-7 gnd Sequenzielle quadratische Optimierung (DE-588)4451045-7 gnd Neuronales Netz (DE-588)4226127-2 gnd Fokker-Planck-Gleichung (DE-588)4126333-9 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Nash-Gleichgewicht (DE-588)4171190-7 gnd Pontrjagin-Maximumprinzip (DE-588)4130753-7 gnd |
topic_facet | Hamilton-Funktion Sequenzielle quadratische Optimierung Neuronales Netz Fokker-Planck-Gleichung Optimale Kontrolle Nash-Gleichgewicht Pontrjagin-Maximumprinzip |
url | https://www.taylorfrancis.com/books/9781003152620 |
work_keys_str_mv | AT borzialfio thesequentialquadratichamiltonianmethodsolvingoptimalcontrolproblems |