Machine learning: theory and practice
This book provides an introduction to the most popular methods in machine learning. It covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including CNNs, reinforcement learning, and unsupervised learning focused on cl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2023
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | DE-573 DE-863 DE-862 DE-91 Volltext |
Zusammenfassung: | This book provides an introduction to the most popular methods in machine learning. It covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including CNNs, reinforcement learning, and unsupervised learning focused on clustering |
Beschreibung: | 1 Online-Ressource (xv, 282 Seiten) Illustrationen, Diagramme |
ISBN: | 9781003002611 9781000818253 |
DOI: | 10.1201/9781003002611 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048923260 | ||
003 | DE-604 | ||
005 | 20241023 | ||
007 | cr|uuu---uuuuu | ||
008 | 230502s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781003002611 |c Online, ebook |9 978-1-003-00261-1 | ||
020 | |a 9781000818253 |9 978-1-00-081825-3 | ||
024 | 7 | |a 10.1201/9781003002611 |2 doi | |
035 | |a (ZDB-30-PQE)EBC7143279 | ||
035 | |a (ZDB-30-PAD)EBC7143279 | ||
035 | |a (ZDB-89-EBL)EBL7143279 | ||
035 | |a (OCoLC)1351751535 | ||
035 | |a (DE-599)BVBBV048923260 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-573 |a DE-863 |a DE-862 | ||
082 | 0 | |a 006.31 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Kalita, Jugal Kumar |e Verfasser |0 (DE-588)1038035732 |4 aut | |
245 | 1 | 0 | |a Machine learning |b theory and practice |c Jugal Kalita |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2023 | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xv, 282 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book provides an introduction to the most popular methods in machine learning. It covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including CNNs, reinforcement learning, and unsupervised learning focused on clustering | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-367-43354-3 |a Kalita, Jugal |t Machine Learning |d Milton : CRC Press LLC,c2022 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-367-43352-9 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003002611 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-7-TFC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034187329 | |
966 | e | |u https://doi.org/10.1201/9781003002611 |l DE-573 |p ZDB-7-TFC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1201/9781003002611 |l DE-863 |p ZDB-7-TFC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1201/9781003002611 |l DE-862 |p ZDB-7-TFC |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=7143279 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1813758932783464448 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kalita, Jugal Kumar |
author_GND | (DE-588)1038035732 |
author_facet | Kalita, Jugal Kumar |
author_role | aut |
author_sort | Kalita, Jugal Kumar |
author_variant | j k k jk jkk |
building | Verbundindex |
bvnumber | BV048923260 |
classification_rvk | ST 300 |
collection | ZDB-30-PQE ZDB-7-TFC |
ctrlnum | (ZDB-30-PQE)EBC7143279 (ZDB-30-PAD)EBC7143279 (ZDB-89-EBL)EBL7143279 (OCoLC)1351751535 (DE-599)BVBBV048923260 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1201/9781003002611 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048923260</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241023</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230502s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003002611</subfield><subfield code="c">Online, ebook</subfield><subfield code="9">978-1-003-00261-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000818253</subfield><subfield code="9">978-1-00-081825-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003002611</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7143279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7143279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7143279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1351751535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048923260</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kalita, Jugal Kumar</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1038035732</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning</subfield><subfield code="b">theory and practice</subfield><subfield code="c">Jugal Kalita</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 282 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides an introduction to the most popular methods in machine learning. It covers regression including regularization, tree-based methods including Random Forests and Boosted Trees, Artificial Neural Networks including CNNs, reinforcement learning, and unsupervised learning focused on clustering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-43354-3</subfield><subfield code="a">Kalita, Jugal</subfield><subfield code="t">Machine Learning</subfield><subfield code="d">Milton : CRC Press LLC,c2022</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-367-43352-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003002611</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034187329</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003002611</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003002611</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003002611</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=7143279</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048923260 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:55:31Z |
indexdate | 2024-10-24T04:01:50Z |
institution | BVB |
isbn | 9781003002611 9781000818253 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034187329 |
oclc_num | 1351751535 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-573 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-91 DE-BY-TUM DE-573 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (xv, 282 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-7-TFC ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | CRC Press |
record_format | marc |
spellingShingle | Kalita, Jugal Kumar Machine learning theory and practice Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 |
title | Machine learning theory and practice |
title_auth | Machine learning theory and practice |
title_exact_search | Machine learning theory and practice |
title_exact_search_txtP | Machine learning theory and practice |
title_full | Machine learning theory and practice Jugal Kalita |
title_fullStr | Machine learning theory and practice Jugal Kalita |
title_full_unstemmed | Machine learning theory and practice Jugal Kalita |
title_short | Machine learning |
title_sort | machine learning theory and practice |
title_sub | theory and practice |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Maschinelles Lernen |
url | https://doi.org/10.1201/9781003002611 |
work_keys_str_mv | AT kalitajugalkumar machinelearningtheoryandpractice |