De Gruyter Studies in Mathematics. Trace Formulas:
This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are stud...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
|
Ausgabe: | 2nd corr. and exten. edition |
Schriftenreihe: | De Gruyter Studies in Mathematics
46/2 |
Schlagworte: | |
Online-Zugang: | FAW01 FAB01 FCO01 FHA01 FKE01 FLA01 UPA01 Volltext |
Zusammenfassung: | This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes' noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes' character formula concerning the Hochschild class of the Chern character |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Mrz 2023) |
Beschreibung: | 1 Online-Ressource (XL, 474 pages) |
ISBN: | 9783110700176 |
DOI: | 10.1515/9783110700176 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048890294 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230405s2023 |||| o||u| ||||||eng d | ||
020 | |a 9783110700176 |9 978-3-11-070017-6 | ||
024 | 7 | |a 10.1515/9783110700176 |2 doi | |
035 | |a (ZDB-23-DGG)9783110700176 | ||
035 | |a (OCoLC)1376408703 | ||
035 | |a (DE-599)BVBBV048890294 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 | ||
100 | 1 | |a Lord, Steven |e Verfasser |4 aut | |
245 | 1 | 0 | |a De Gruyter Studies in Mathematics. Trace Formulas |c Steven Lord, Fedor Sukochev, Dmitriy Zanin, Edward McDonald |
250 | |a 2nd corr. and exten. edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (XL, 474 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Studies in Mathematics |v 46/2 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Mrz 2023) | ||
520 | |a This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes' noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes' character formula concerning the Hochschild class of the Chern character | ||
546 | |a In English | ||
650 | 4 | |a Diximier Trace | |
650 | 4 | |a Hilbertraum | |
650 | 4 | |a Pseudodifferentialoperator | |
650 | 4 | |a Singular Trace | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 0 | 7 | |a Operatorraum |0 (DE-588)4591231-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spur |g Mathematik |0 (DE-588)4202272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatorenideal |0 (DE-588)4284995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spur |g Mathematik |0 (DE-588)4202272-1 |D s |
689 | 0 | 1 | |a Operatorraum |0 (DE-588)4591231-2 |D s |
689 | 0 | 2 | |a Operatorenideal |0 (DE-588)4284995-0 |D s |
689 | 0 | 3 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a McDonald, Edward |e Sonstige |4 oth | |
700 | 1 | |a Sukochev, Fedor |e Sonstige |4 oth | |
700 | 1 | |a Zanin, Dmitriy |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110700008 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110700176 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034154880 | ||
966 | e | |u https://doi.org/10.1515/9783110700176 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110700176 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110700176 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110700176 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110700176 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110700176 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110700176 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185045118746624 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lord, Steven |
author_facet | Lord, Steven |
author_role | aut |
author_sort | Lord, Steven |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV048890294 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9783110700176 (OCoLC)1376408703 (DE-599)BVBBV048890294 |
doi_str_mv | 10.1515/9783110700176 |
edition | 2nd corr. and exten. edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03526nmm a2200673zcb4500</leader><controlfield tag="001">BV048890294</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230405s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110700176</subfield><subfield code="9">978-3-11-070017-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110700176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110700176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1376408703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048890294</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lord, Steven</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">De Gruyter Studies in Mathematics. Trace Formulas</subfield><subfield code="c">Steven Lord, Fedor Sukochev, Dmitriy Zanin, Edward McDonald</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd corr. and exten. edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XL, 474 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">46/2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Mrz 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes' noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes' character formula concerning the Hochschild class of the Chern character</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diximier Trace</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbertraum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudodifferentialoperator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular Trace</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorraum</subfield><subfield code="0">(DE-588)4591231-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spur</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4202272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorenideal</subfield><subfield code="0">(DE-588)4284995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spur</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4202272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatorraum</subfield><subfield code="0">(DE-588)4591231-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Operatorenideal</subfield><subfield code="0">(DE-588)4284995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McDonald, Edward</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sukochev, Fedor</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanin, Dmitriy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110700008</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034154880</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110700176</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048890294 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:48:19Z |
indexdate | 2024-07-10T09:48:59Z |
institution | BVB |
isbn | 9783110700176 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034154880 |
oclc_num | 1376408703 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (XL, 474 pages) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Studies in Mathematics |
spelling | Lord, Steven Verfasser aut De Gruyter Studies in Mathematics. Trace Formulas Steven Lord, Fedor Sukochev, Dmitriy Zanin, Edward McDonald 2nd corr. and exten. edition Berlin ; Boston De Gruyter [2023] © 2023 1 Online-Ressource (XL, 474 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter Studies in Mathematics 46/2 Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Mrz 2023) This volume introduces noncommutative integration theory on semifinite von Neumann algebras and the theory of singular traces for symmetric operator spaces. Deeper aspects of the association between measurability, poles and residues of spectral zeta functions, and asymptotics of heat traces are studied. Applications in Connes' noncommutative geometry that are detailed include integration of quantum differentials, measures on fractals, and Connes' character formula concerning the Hochschild class of the Chern character In English Diximier Trace Hilbertraum Pseudodifferentialoperator Singular Trace MATHEMATICS / Mathematical Analysis bisacsh Operatorraum (DE-588)4591231-2 gnd rswk-swf Spur Mathematik (DE-588)4202272-1 gnd rswk-swf Operatorenideal (DE-588)4284995-0 gnd rswk-swf Nichtkommutative Geometrie (DE-588)4171742-9 gnd rswk-swf Spur Mathematik (DE-588)4202272-1 s Operatorraum (DE-588)4591231-2 s Operatorenideal (DE-588)4284995-0 s Nichtkommutative Geometrie (DE-588)4171742-9 s DE-604 McDonald, Edward Sonstige oth Sukochev, Fedor Sonstige oth Zanin, Dmitriy Sonstige oth Erscheint auch als Druck-Ausgabe 9783110700008 https://doi.org/10.1515/9783110700176 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lord, Steven De Gruyter Studies in Mathematics. Trace Formulas Diximier Trace Hilbertraum Pseudodifferentialoperator Singular Trace MATHEMATICS / Mathematical Analysis bisacsh Operatorraum (DE-588)4591231-2 gnd Spur Mathematik (DE-588)4202272-1 gnd Operatorenideal (DE-588)4284995-0 gnd Nichtkommutative Geometrie (DE-588)4171742-9 gnd |
subject_GND | (DE-588)4591231-2 (DE-588)4202272-1 (DE-588)4284995-0 (DE-588)4171742-9 |
title | De Gruyter Studies in Mathematics. Trace Formulas |
title_auth | De Gruyter Studies in Mathematics. Trace Formulas |
title_exact_search | De Gruyter Studies in Mathematics. Trace Formulas |
title_exact_search_txtP | De Gruyter Studies in Mathematics. Trace Formulas |
title_full | De Gruyter Studies in Mathematics. Trace Formulas Steven Lord, Fedor Sukochev, Dmitriy Zanin, Edward McDonald |
title_fullStr | De Gruyter Studies in Mathematics. Trace Formulas Steven Lord, Fedor Sukochev, Dmitriy Zanin, Edward McDonald |
title_full_unstemmed | De Gruyter Studies in Mathematics. Trace Formulas Steven Lord, Fedor Sukochev, Dmitriy Zanin, Edward McDonald |
title_short | De Gruyter Studies in Mathematics. Trace Formulas |
title_sort | de gruyter studies in mathematics trace formulas |
topic | Diximier Trace Hilbertraum Pseudodifferentialoperator Singular Trace MATHEMATICS / Mathematical Analysis bisacsh Operatorraum (DE-588)4591231-2 gnd Spur Mathematik (DE-588)4202272-1 gnd Operatorenideal (DE-588)4284995-0 gnd Nichtkommutative Geometrie (DE-588)4171742-9 gnd |
topic_facet | Diximier Trace Hilbertraum Pseudodifferentialoperator Singular Trace MATHEMATICS / Mathematical Analysis Operatorraum Spur Mathematik Operatorenideal Nichtkommutative Geometrie |
url | https://doi.org/10.1515/9783110700176 |
work_keys_str_mv | AT lordsteven degruyterstudiesinmathematicstraceformulas AT mcdonaldedward degruyterstudiesinmathematicstraceformulas AT sukochevfedor degruyterstudiesinmathematicstraceformulas AT zanindmitriy degruyterstudiesinmathematicstraceformulas |