Rectifiability: a survey
Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schriftenreihe: | London Mathematical Society lecture note series
483 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 Volltext |
Zusammenfassung: | Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside |
Beschreibung: | Title from publisher's bibliographic system (viewed on 10 Jan 2023) |
Beschreibung: | 1 Online-Ressource (vii, 172 Seiten) |
ISBN: | 9781009288057 |
DOI: | 10.1017/9781009288057 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048690940 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230203s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009288057 |c Online |9 978-1-00-928805-7 | ||
024 | 7 | |a 10.1017/9781009288057 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009288057 | ||
035 | |a (OCoLC)1369552511 | ||
035 | |a (DE-599)BVBBV048690940 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 510 | |
100 | 1 | |a Mattila, Pertti |d 1947- |0 (DE-588)1075782376 |4 aut | |
245 | 1 | 0 | |a Rectifiability |b a survey |c Pertti Mattila |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (vii, 172 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series | |
490 | 0 | |a 483 | |
500 | |a Title from publisher's bibliographic system (viewed on 10 Jan 2023) | ||
520 | |a Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside | ||
650 | 4 | |a Curves / Rectification and quadrature | |
650 | 0 | 7 | |a Integrationstheorie |0 (DE-588)4138369-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | 1 | |a Integrationstheorie |0 (DE-588)4138369-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-928808-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009288057 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034065147 | ||
966 | e | |u https://doi.org/10.1017/9781009288057 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009288057 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009288057 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184872181301248 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mattila, Pertti 1947- |
author_GND | (DE-588)1075782376 |
author_facet | Mattila, Pertti 1947- |
author_role | aut |
author_sort | Mattila, Pertti 1947- |
author_variant | p m pm |
building | Verbundindex |
bvnumber | BV048690940 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009288057 (OCoLC)1369552511 (DE-599)BVBBV048690940 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009288057 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02842nmm a2200481zc 4500</leader><controlfield tag="001">BV048690940</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230203s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009288057</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-928805-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009288057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009288057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1369552511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048690940</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mattila, Pertti</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)1075782376</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rectifiability</subfield><subfield code="b">a survey</subfield><subfield code="c">Pertti Mattila</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 172 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">483</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 10 Jan 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves / Rectification and quadrature</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-928808-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009288057</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034065147</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009288057</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009288057</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009288057</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048690940 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:27:26Z |
indexdate | 2024-07-10T09:46:14Z |
institution | BVB |
isbn | 9781009288057 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034065147 |
oclc_num | 1369552511 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 Online-Ressource (vii, 172 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series 483 |
spelling | Mattila, Pertti 1947- (DE-588)1075782376 aut Rectifiability a survey Pertti Mattila Cambridge Cambridge University Press 2023 1 Online-Ressource (vii, 172 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 483 Title from publisher's bibliographic system (viewed on 10 Jan 2023) Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside Curves / Rectification and quadrature Integrationstheorie (DE-588)4138369-2 gnd rswk-swf Maßtheorie (DE-588)4074626-4 gnd rswk-swf Maßtheorie (DE-588)4074626-4 s Integrationstheorie (DE-588)4138369-2 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-00-928808-8 https://doi.org/10.1017/9781009288057 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mattila, Pertti 1947- Rectifiability a survey Curves / Rectification and quadrature Integrationstheorie (DE-588)4138369-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
subject_GND | (DE-588)4138369-2 (DE-588)4074626-4 |
title | Rectifiability a survey |
title_auth | Rectifiability a survey |
title_exact_search | Rectifiability a survey |
title_exact_search_txtP | Rectifiability a survey |
title_full | Rectifiability a survey Pertti Mattila |
title_fullStr | Rectifiability a survey Pertti Mattila |
title_full_unstemmed | Rectifiability a survey Pertti Mattila |
title_short | Rectifiability |
title_sort | rectifiability a survey |
title_sub | a survey |
topic | Curves / Rectification and quadrature Integrationstheorie (DE-588)4138369-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
topic_facet | Curves / Rectification and quadrature Integrationstheorie Maßtheorie |
url | https://doi.org/10.1017/9781009288057 |
work_keys_str_mv | AT mattilapertti rectifiabilityasurvey |