Practitioner's Guide to Data Science:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Delhi
BPB Publications
2022
|
Ausgabe: | 1st ed |
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | 1 Online-Ressource (223 Seiten) |
ISBN: | 9789391392956 9789391392871 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048631945 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230105s2022 |||| o||u| ||||||eng d | ||
020 | |a 9789391392956 |q electronic bk. |9 978-93-91392-95-6 | ||
020 | |a 9789391392871 |9 978-93-91392-87-1 | ||
035 | |a (ZDB-30-PQE)EBC6891778 | ||
035 | |a (ZDB-30-PAD)EBC6891778 | ||
035 | |a (ZDB-89-EBL)EBL6891778 | ||
035 | |a (OCoLC)1302009956 | ||
035 | |a (DE-599)BVBBV048631945 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
100 | 1 | |a Mirza, Nasir Ali |e Verfasser |4 aut | |
245 | 1 | 0 | |a Practitioner's Guide to Data Science |
250 | |a 1st ed | ||
264 | 1 | |a Delhi |b BPB Publications |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (223 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover Page -- Title Page -- Copyright Page -- Foreword -- Dedication Page -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Errata -- Table of Contents -- 1. Data Science for Business -- Structure -- Objectives -- Application programmer to Data Science professional -- What is Data Science? -- The unprecedented scope of Data Science -- Data Science application -- Big Data, DM, ML, DL, AI, and Data Science -- Legal, ethical, and security aspects of Data Science -- Methodology used in organizing this book -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 2. Data Science Project Methodologies and Team Processes -- Structure -- Objectives -- What is a process and its importance? -- Data Science from a process perspective -- Software engineering and Data Science -- Data Science project methodologies and processes -- Knowledge Discovery in Databases -- CCC Big Data pipeline -- CRoss-Industry Standard Process for Data Mining -- Domino's Data Science Life Cycle -- Microsoft's Team Data Science Process -- Data Science lifecycle -- Standardized project structure -- Infrastructure and resources -- Tools and utilities -- Sample, Explore, Modify, Model, and Assess -- Data-Driven Scrum (DDS) -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 3. Business Understanding and Its Data Landscape -- Structure -- Objectives -- What is involved in business understanding? -- CRISP-DM guidelines -- Microsoft TDSP guidelines -- Business problem types and Data Science solutions -- Reliability and validity of business data -- Hands-on use case -- Project charter -- Business background -- Project scope -- Project team -- Evaluation metrics -- Project plan -- Solution architecture -- Communication plan -- Data sources -- Data dictionary | |
505 | 8 | |a Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 4. Acquire, Explore, and Analyze Data -- Structure -- Objectives -- Development environment options -- Guidelines for data acquisition and understanding -- CRISP-DM -- Microsoft TDSP -- Data acquisition and sampling -- Essential considerations -- Use case data -- Down-sampling the use case data -- Down-sampling for rate spread use case -- Data exploration and visualization -- Essential considerations -- Explore and visualize HMDA use case data -- HMDA use case data distribution -- Data relations (bivariate) -- Categorical variables -- Data relations (multivariate) -- Data quality report and decision checkpoint -- Data quality -- Decision checkpoint -- Conclusion -- Points to remember -- Multiple choice question -- Answers -- Questions -- Key terms -- 5. Pre-processing and Preparing Data -- Structure -- Objectives -- Guidelines for data preparation -- CRISP-DM for data preparation -- Selection of data -- Cleaning of data -- Construction of data -- Integration of data -- Data formatting -- Microsoft TDSP for data preparation -- Data pre-processing concept -- Data health screening -- Data pre-processing major tasks -- Feature engineering -- Data pre-processing and cleaning -- Feature engineering -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 6. Developing a Machine Learning Model -- Structure -- Objectives -- Guidelines for model development -- CRISP-DM -- Selection of modeling technique -- Generation of test design -- Model building -- Model assessment -- Microsoft TDSP -- Goals -- Tasks -- Deliverables -- Modeling algorithms and evaluation -- What is a model? -- How to choose an algorithm? -- Metrics for model evaluation -- Classification metrics -- Regression metrics | |
505 | 8 | |a Model development procedure -- Modeling for HMDA use case -- Choosing an algorithm -- Modeling scenario-1 -- Modeling scenario-2 -- Model tuning -- Feature selection -- Dimensionality reduction -- Cross-validation -- Regularization -- Bagging and boosting -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 7. Lap Around Azure ML Service -- Structure -- Objectives -- Azure ML Service overview -- Architecture and key concepts -- Workspace -- Compute -- Managed compute -- Un-managed compute -- Datasets and datastores -- Environments -- Experiments -- Runs -- Run configurations -- Snapshots -- Pipelines -- Models -- Model registry -- Deployment -- Endpoints -- Web service endpoint -- IoT module endpoints -- Getting started: signup and provisioning -- AutoML in Azure ML Service -- Model development with Azure ML Service -- Azure ML Designer -- AutoML using ML Studio UI -- AutoML using Python SDK -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 8. Deploying and Managing Models -- Structure -- Objectives -- Guidelines for deployment and evaluation -- CRISP-DM -- Microsoft TDSP -- Model lifecycle management -- Model lifecycle using Azure ML SDK -- Training the model -- Registering model -- Deploying the model -- Testing/consuming deployed model -- Retraining a model -- Model lifecycle using Azure ML Studio UI -- MLOps with Azure Pipelines -- Pre-requisites -- Azure DevOps project -- Project repository -- Azure Subscription -- Azure Service connection -- Creating a build pipeline -- Creating a release pipeline -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- Index | |
650 | 4 | |a Big data | |
653 | 6 | |a Electronic books | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Mirza, Nasir Ali |t Practitioner's Guide to Data Science |d Delhi : BPB Publications,c2022 |z 9789391392871 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034006965 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6891778 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184764985376768 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mirza, Nasir Ali |
author_facet | Mirza, Nasir Ali |
author_role | aut |
author_sort | Mirza, Nasir Ali |
author_variant | n a m na nam |
building | Verbundindex |
bvnumber | BV048631945 |
collection | ZDB-30-PQE |
contents | Cover Page -- Title Page -- Copyright Page -- Foreword -- Dedication Page -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Errata -- Table of Contents -- 1. Data Science for Business -- Structure -- Objectives -- Application programmer to Data Science professional -- What is Data Science? -- The unprecedented scope of Data Science -- Data Science application -- Big Data, DM, ML, DL, AI, and Data Science -- Legal, ethical, and security aspects of Data Science -- Methodology used in organizing this book -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 2. Data Science Project Methodologies and Team Processes -- Structure -- Objectives -- What is a process and its importance? -- Data Science from a process perspective -- Software engineering and Data Science -- Data Science project methodologies and processes -- Knowledge Discovery in Databases -- CCC Big Data pipeline -- CRoss-Industry Standard Process for Data Mining -- Domino's Data Science Life Cycle -- Microsoft's Team Data Science Process -- Data Science lifecycle -- Standardized project structure -- Infrastructure and resources -- Tools and utilities -- Sample, Explore, Modify, Model, and Assess -- Data-Driven Scrum (DDS) -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 3. Business Understanding and Its Data Landscape -- Structure -- Objectives -- What is involved in business understanding? -- CRISP-DM guidelines -- Microsoft TDSP guidelines -- Business problem types and Data Science solutions -- Reliability and validity of business data -- Hands-on use case -- Project charter -- Business background -- Project scope -- Project team -- Evaluation metrics -- Project plan -- Solution architecture -- Communication plan -- Data sources -- Data dictionary Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 4. Acquire, Explore, and Analyze Data -- Structure -- Objectives -- Development environment options -- Guidelines for data acquisition and understanding -- CRISP-DM -- Microsoft TDSP -- Data acquisition and sampling -- Essential considerations -- Use case data -- Down-sampling the use case data -- Down-sampling for rate spread use case -- Data exploration and visualization -- Essential considerations -- Explore and visualize HMDA use case data -- HMDA use case data distribution -- Data relations (bivariate) -- Categorical variables -- Data relations (multivariate) -- Data quality report and decision checkpoint -- Data quality -- Decision checkpoint -- Conclusion -- Points to remember -- Multiple choice question -- Answers -- Questions -- Key terms -- 5. Pre-processing and Preparing Data -- Structure -- Objectives -- Guidelines for data preparation -- CRISP-DM for data preparation -- Selection of data -- Cleaning of data -- Construction of data -- Integration of data -- Data formatting -- Microsoft TDSP for data preparation -- Data pre-processing concept -- Data health screening -- Data pre-processing major tasks -- Feature engineering -- Data pre-processing and cleaning -- Feature engineering -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 6. Developing a Machine Learning Model -- Structure -- Objectives -- Guidelines for model development -- CRISP-DM -- Selection of modeling technique -- Generation of test design -- Model building -- Model assessment -- Microsoft TDSP -- Goals -- Tasks -- Deliverables -- Modeling algorithms and evaluation -- What is a model? -- How to choose an algorithm? -- Metrics for model evaluation -- Classification metrics -- Regression metrics Model development procedure -- Modeling for HMDA use case -- Choosing an algorithm -- Modeling scenario-1 -- Modeling scenario-2 -- Model tuning -- Feature selection -- Dimensionality reduction -- Cross-validation -- Regularization -- Bagging and boosting -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 7. Lap Around Azure ML Service -- Structure -- Objectives -- Azure ML Service overview -- Architecture and key concepts -- Workspace -- Compute -- Managed compute -- Un-managed compute -- Datasets and datastores -- Environments -- Experiments -- Runs -- Run configurations -- Snapshots -- Pipelines -- Models -- Model registry -- Deployment -- Endpoints -- Web service endpoint -- IoT module endpoints -- Getting started: signup and provisioning -- AutoML in Azure ML Service -- Model development with Azure ML Service -- Azure ML Designer -- AutoML using ML Studio UI -- AutoML using Python SDK -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 8. Deploying and Managing Models -- Structure -- Objectives -- Guidelines for deployment and evaluation -- CRISP-DM -- Microsoft TDSP -- Model lifecycle management -- Model lifecycle using Azure ML SDK -- Training the model -- Registering model -- Deploying the model -- Testing/consuming deployed model -- Retraining a model -- Model lifecycle using Azure ML Studio UI -- MLOps with Azure Pipelines -- Pre-requisites -- Azure DevOps project -- Project repository -- Azure Subscription -- Azure Service connection -- Creating a build pipeline -- Creating a release pipeline -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- Index |
ctrlnum | (ZDB-30-PQE)EBC6891778 (ZDB-30-PAD)EBC6891778 (ZDB-89-EBL)EBL6891778 (OCoLC)1302009956 (DE-599)BVBBV048631945 |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06845nmm a2200421 c 4500</leader><controlfield tag="001">BV048631945</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230105s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789391392956</subfield><subfield code="q">electronic bk.</subfield><subfield code="9">978-93-91392-95-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789391392871</subfield><subfield code="9">978-93-91392-87-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6891778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6891778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6891778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1302009956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048631945</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mirza, Nasir Ali</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practitioner's Guide to Data Science</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Delhi</subfield><subfield code="b">BPB Publications</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (223 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover Page -- Title Page -- Copyright Page -- Foreword -- Dedication Page -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Errata -- Table of Contents -- 1. Data Science for Business -- Structure -- Objectives -- Application programmer to Data Science professional -- What is Data Science? -- The unprecedented scope of Data Science -- Data Science application -- Big Data, DM, ML, DL, AI, and Data Science -- Legal, ethical, and security aspects of Data Science -- Methodology used in organizing this book -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 2. Data Science Project Methodologies and Team Processes -- Structure -- Objectives -- What is a process and its importance? -- Data Science from a process perspective -- Software engineering and Data Science -- Data Science project methodologies and processes -- Knowledge Discovery in Databases -- CCC Big Data pipeline -- CRoss-Industry Standard Process for Data Mining -- Domino's Data Science Life Cycle -- Microsoft's Team Data Science Process -- Data Science lifecycle -- Standardized project structure -- Infrastructure and resources -- Tools and utilities -- Sample, Explore, Modify, Model, and Assess -- Data-Driven Scrum (DDS) -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 3. Business Understanding and Its Data Landscape -- Structure -- Objectives -- What is involved in business understanding? -- CRISP-DM guidelines -- Microsoft TDSP guidelines -- Business problem types and Data Science solutions -- Reliability and validity of business data -- Hands-on use case -- Project charter -- Business background -- Project scope -- Project team -- Evaluation metrics -- Project plan -- Solution architecture -- Communication plan -- Data sources -- Data dictionary</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 4. Acquire, Explore, and Analyze Data -- Structure -- Objectives -- Development environment options -- Guidelines for data acquisition and understanding -- CRISP-DM -- Microsoft TDSP -- Data acquisition and sampling -- Essential considerations -- Use case data -- Down-sampling the use case data -- Down-sampling for rate spread use case -- Data exploration and visualization -- Essential considerations -- Explore and visualize HMDA use case data -- HMDA use case data distribution -- Data relations (bivariate) -- Categorical variables -- Data relations (multivariate) -- Data quality report and decision checkpoint -- Data quality -- Decision checkpoint -- Conclusion -- Points to remember -- Multiple choice question -- Answers -- Questions -- Key terms -- 5. Pre-processing and Preparing Data -- Structure -- Objectives -- Guidelines for data preparation -- CRISP-DM for data preparation -- Selection of data -- Cleaning of data -- Construction of data -- Integration of data -- Data formatting -- Microsoft TDSP for data preparation -- Data pre-processing concept -- Data health screening -- Data pre-processing major tasks -- Feature engineering -- Data pre-processing and cleaning -- Feature engineering -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 6. Developing a Machine Learning Model -- Structure -- Objectives -- Guidelines for model development -- CRISP-DM -- Selection of modeling technique -- Generation of test design -- Model building -- Model assessment -- Microsoft TDSP -- Goals -- Tasks -- Deliverables -- Modeling algorithms and evaluation -- What is a model? -- How to choose an algorithm? -- Metrics for model evaluation -- Classification metrics -- Regression metrics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Model development procedure -- Modeling for HMDA use case -- Choosing an algorithm -- Modeling scenario-1 -- Modeling scenario-2 -- Model tuning -- Feature selection -- Dimensionality reduction -- Cross-validation -- Regularization -- Bagging and boosting -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 7. Lap Around Azure ML Service -- Structure -- Objectives -- Azure ML Service overview -- Architecture and key concepts -- Workspace -- Compute -- Managed compute -- Un-managed compute -- Datasets and datastores -- Environments -- Experiments -- Runs -- Run configurations -- Snapshots -- Pipelines -- Models -- Model registry -- Deployment -- Endpoints -- Web service endpoint -- IoT module endpoints -- Getting started: signup and provisioning -- AutoML in Azure ML Service -- Model development with Azure ML Service -- Azure ML Designer -- AutoML using ML Studio UI -- AutoML using Python SDK -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 8. Deploying and Managing Models -- Structure -- Objectives -- Guidelines for deployment and evaluation -- CRISP-DM -- Microsoft TDSP -- Model lifecycle management -- Model lifecycle using Azure ML SDK -- Training the model -- Registering model -- Deploying the model -- Testing/consuming deployed model -- Retraining a model -- Model lifecycle using Azure ML Studio UI -- MLOps with Azure Pipelines -- Pre-requisites -- Azure DevOps project -- Project repository -- Azure Subscription -- Azure Service connection -- Creating a build pipeline -- Creating a release pipeline -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Mirza, Nasir Ali</subfield><subfield code="t">Practitioner's Guide to Data Science</subfield><subfield code="d">Delhi : BPB Publications,c2022</subfield><subfield code="z">9789391392871</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034006965</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6891778</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048631945 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:16:05Z |
indexdate | 2024-07-10T09:44:32Z |
institution | BVB |
isbn | 9789391392956 9789391392871 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034006965 |
oclc_num | 1302009956 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (223 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | BPB Publications |
record_format | marc |
spelling | Mirza, Nasir Ali Verfasser aut Practitioner's Guide to Data Science 1st ed Delhi BPB Publications 2022 ©2022 1 Online-Ressource (223 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover Page -- Title Page -- Copyright Page -- Foreword -- Dedication Page -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Errata -- Table of Contents -- 1. Data Science for Business -- Structure -- Objectives -- Application programmer to Data Science professional -- What is Data Science? -- The unprecedented scope of Data Science -- Data Science application -- Big Data, DM, ML, DL, AI, and Data Science -- Legal, ethical, and security aspects of Data Science -- Methodology used in organizing this book -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 2. Data Science Project Methodologies and Team Processes -- Structure -- Objectives -- What is a process and its importance? -- Data Science from a process perspective -- Software engineering and Data Science -- Data Science project methodologies and processes -- Knowledge Discovery in Databases -- CCC Big Data pipeline -- CRoss-Industry Standard Process for Data Mining -- Domino's Data Science Life Cycle -- Microsoft's Team Data Science Process -- Data Science lifecycle -- Standardized project structure -- Infrastructure and resources -- Tools and utilities -- Sample, Explore, Modify, Model, and Assess -- Data-Driven Scrum (DDS) -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 3. Business Understanding and Its Data Landscape -- Structure -- Objectives -- What is involved in business understanding? -- CRISP-DM guidelines -- Microsoft TDSP guidelines -- Business problem types and Data Science solutions -- Reliability and validity of business data -- Hands-on use case -- Project charter -- Business background -- Project scope -- Project team -- Evaluation metrics -- Project plan -- Solution architecture -- Communication plan -- Data sources -- Data dictionary Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 4. Acquire, Explore, and Analyze Data -- Structure -- Objectives -- Development environment options -- Guidelines for data acquisition and understanding -- CRISP-DM -- Microsoft TDSP -- Data acquisition and sampling -- Essential considerations -- Use case data -- Down-sampling the use case data -- Down-sampling for rate spread use case -- Data exploration and visualization -- Essential considerations -- Explore and visualize HMDA use case data -- HMDA use case data distribution -- Data relations (bivariate) -- Categorical variables -- Data relations (multivariate) -- Data quality report and decision checkpoint -- Data quality -- Decision checkpoint -- Conclusion -- Points to remember -- Multiple choice question -- Answers -- Questions -- Key terms -- 5. Pre-processing and Preparing Data -- Structure -- Objectives -- Guidelines for data preparation -- CRISP-DM for data preparation -- Selection of data -- Cleaning of data -- Construction of data -- Integration of data -- Data formatting -- Microsoft TDSP for data preparation -- Data pre-processing concept -- Data health screening -- Data pre-processing major tasks -- Feature engineering -- Data pre-processing and cleaning -- Feature engineering -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 6. Developing a Machine Learning Model -- Structure -- Objectives -- Guidelines for model development -- CRISP-DM -- Selection of modeling technique -- Generation of test design -- Model building -- Model assessment -- Microsoft TDSP -- Goals -- Tasks -- Deliverables -- Modeling algorithms and evaluation -- What is a model? -- How to choose an algorithm? -- Metrics for model evaluation -- Classification metrics -- Regression metrics Model development procedure -- Modeling for HMDA use case -- Choosing an algorithm -- Modeling scenario-1 -- Modeling scenario-2 -- Model tuning -- Feature selection -- Dimensionality reduction -- Cross-validation -- Regularization -- Bagging and boosting -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 7. Lap Around Azure ML Service -- Structure -- Objectives -- Azure ML Service overview -- Architecture and key concepts -- Workspace -- Compute -- Managed compute -- Un-managed compute -- Datasets and datastores -- Environments -- Experiments -- Runs -- Run configurations -- Snapshots -- Pipelines -- Models -- Model registry -- Deployment -- Endpoints -- Web service endpoint -- IoT module endpoints -- Getting started: signup and provisioning -- AutoML in Azure ML Service -- Model development with Azure ML Service -- Azure ML Designer -- AutoML using ML Studio UI -- AutoML using Python SDK -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 8. Deploying and Managing Models -- Structure -- Objectives -- Guidelines for deployment and evaluation -- CRISP-DM -- Microsoft TDSP -- Model lifecycle management -- Model lifecycle using Azure ML SDK -- Training the model -- Registering model -- Deploying the model -- Testing/consuming deployed model -- Retraining a model -- Model lifecycle using Azure ML Studio UI -- MLOps with Azure Pipelines -- Pre-requisites -- Azure DevOps project -- Project repository -- Azure Subscription -- Azure Service connection -- Creating a build pipeline -- Creating a release pipeline -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- Index Big data Electronic books Erscheint auch als Druck-Ausgabe Mirza, Nasir Ali Practitioner's Guide to Data Science Delhi : BPB Publications,c2022 9789391392871 |
spellingShingle | Mirza, Nasir Ali Practitioner's Guide to Data Science Cover Page -- Title Page -- Copyright Page -- Foreword -- Dedication Page -- About the Author -- About the Reviewer -- Acknowledgement -- Preface -- Errata -- Table of Contents -- 1. Data Science for Business -- Structure -- Objectives -- Application programmer to Data Science professional -- What is Data Science? -- The unprecedented scope of Data Science -- Data Science application -- Big Data, DM, ML, DL, AI, and Data Science -- Legal, ethical, and security aspects of Data Science -- Methodology used in organizing this book -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 2. Data Science Project Methodologies and Team Processes -- Structure -- Objectives -- What is a process and its importance? -- Data Science from a process perspective -- Software engineering and Data Science -- Data Science project methodologies and processes -- Knowledge Discovery in Databases -- CCC Big Data pipeline -- CRoss-Industry Standard Process for Data Mining -- Domino's Data Science Life Cycle -- Microsoft's Team Data Science Process -- Data Science lifecycle -- Standardized project structure -- Infrastructure and resources -- Tools and utilities -- Sample, Explore, Modify, Model, and Assess -- Data-Driven Scrum (DDS) -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 3. Business Understanding and Its Data Landscape -- Structure -- Objectives -- What is involved in business understanding? -- CRISP-DM guidelines -- Microsoft TDSP guidelines -- Business problem types and Data Science solutions -- Reliability and validity of business data -- Hands-on use case -- Project charter -- Business background -- Project scope -- Project team -- Evaluation metrics -- Project plan -- Solution architecture -- Communication plan -- Data sources -- Data dictionary Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 4. Acquire, Explore, and Analyze Data -- Structure -- Objectives -- Development environment options -- Guidelines for data acquisition and understanding -- CRISP-DM -- Microsoft TDSP -- Data acquisition and sampling -- Essential considerations -- Use case data -- Down-sampling the use case data -- Down-sampling for rate spread use case -- Data exploration and visualization -- Essential considerations -- Explore and visualize HMDA use case data -- HMDA use case data distribution -- Data relations (bivariate) -- Categorical variables -- Data relations (multivariate) -- Data quality report and decision checkpoint -- Data quality -- Decision checkpoint -- Conclusion -- Points to remember -- Multiple choice question -- Answers -- Questions -- Key terms -- 5. Pre-processing and Preparing Data -- Structure -- Objectives -- Guidelines for data preparation -- CRISP-DM for data preparation -- Selection of data -- Cleaning of data -- Construction of data -- Integration of data -- Data formatting -- Microsoft TDSP for data preparation -- Data pre-processing concept -- Data health screening -- Data pre-processing major tasks -- Feature engineering -- Data pre-processing and cleaning -- Feature engineering -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 6. Developing a Machine Learning Model -- Structure -- Objectives -- Guidelines for model development -- CRISP-DM -- Selection of modeling technique -- Generation of test design -- Model building -- Model assessment -- Microsoft TDSP -- Goals -- Tasks -- Deliverables -- Modeling algorithms and evaluation -- What is a model? -- How to choose an algorithm? -- Metrics for model evaluation -- Classification metrics -- Regression metrics Model development procedure -- Modeling for HMDA use case -- Choosing an algorithm -- Modeling scenario-1 -- Modeling scenario-2 -- Model tuning -- Feature selection -- Dimensionality reduction -- Cross-validation -- Regularization -- Bagging and boosting -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 7. Lap Around Azure ML Service -- Structure -- Objectives -- Azure ML Service overview -- Architecture and key concepts -- Workspace -- Compute -- Managed compute -- Un-managed compute -- Datasets and datastores -- Environments -- Experiments -- Runs -- Run configurations -- Snapshots -- Pipelines -- Models -- Model registry -- Deployment -- Endpoints -- Web service endpoint -- IoT module endpoints -- Getting started: signup and provisioning -- AutoML in Azure ML Service -- Model development with Azure ML Service -- Azure ML Designer -- AutoML using ML Studio UI -- AutoML using Python SDK -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- 8. Deploying and Managing Models -- Structure -- Objectives -- Guidelines for deployment and evaluation -- CRISP-DM -- Microsoft TDSP -- Model lifecycle management -- Model lifecycle using Azure ML SDK -- Training the model -- Registering model -- Deploying the model -- Testing/consuming deployed model -- Retraining a model -- Model lifecycle using Azure ML Studio UI -- MLOps with Azure Pipelines -- Pre-requisites -- Azure DevOps project -- Project repository -- Azure Subscription -- Azure Service connection -- Creating a build pipeline -- Creating a release pipeline -- Conclusion -- Points to remember -- Multiple choice questions -- Answers -- Questions -- Key terms -- Index Big data |
title | Practitioner's Guide to Data Science |
title_auth | Practitioner's Guide to Data Science |
title_exact_search | Practitioner's Guide to Data Science |
title_exact_search_txtP | Practitioner's Guide to Data Science |
title_full | Practitioner's Guide to Data Science |
title_fullStr | Practitioner's Guide to Data Science |
title_full_unstemmed | Practitioner's Guide to Data Science |
title_short | Practitioner's Guide to Data Science |
title_sort | practitioner s guide to data science |
topic | Big data |
topic_facet | Big data |
work_keys_str_mv | AT mirzanasirali practitionersguidetodatascience |