Time series forecasting using deep learning: combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Delhi, India
BPB Publications
2022
|
Ausgabe: | First edition |
Schlagworte: | |
Beschreibung: | Includes index |
Beschreibung: | xxiii, 289 Seiten Illustrationen |
ISBN: | 9391392571 9789391392574 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV048538806 | ||
003 | DE-604 | ||
005 | 20230425 | ||
007 | t | ||
008 | 221102s2022 ii a||| |||| 00||| eng d | ||
020 | |a 9391392571 |c paperback |9 93-91392-57-1 | ||
020 | |a 9789391392574 |c paperback |9 978-93-91392-57-4 | ||
035 | |a (OCoLC)1378503026 | ||
035 | |a (DE-599)BVBBV048538806 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a ii |c XB-IN | ||
049 | |a DE-862 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Gridin, Ivan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Time series forecasting using deep learning |b combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions |c Ivan Gridin |
250 | |a First edition | ||
264 | 1 | |a New Delhi, India |b BPB Publications |c 2022 | |
300 | |a xxiii, 289 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
336 | |b sti |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes index | ||
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vorhersagbarkeit |0 (DE-588)4260601-9 |2 gnd |9 rswk-swf |
653 | 0 | |a Deep learning (Machine learning) | |
653 | 0 | |a Time-series analysis | |
653 | 0 | |a Neural networks (Computer science) | |
653 | 0 | |a Python (Computer program language) | |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Vorhersagbarkeit |0 (DE-588)4260601-9 |D s |
689 | 0 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033915352 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/ST 302 G847 |
DE-BY-FWS_katkey | 1010936 |
DE-BY-FWS_media_number | 083000525046 083000525061 |
_version_ | 1806177122099658752 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gridin, Ivan |
author_facet | Gridin, Ivan |
author_role | aut |
author_sort | Gridin, Ivan |
author_variant | i g ig |
building | Verbundindex |
bvnumber | BV048538806 |
classification_rvk | ST 302 |
ctrlnum | (OCoLC)1378503026 (DE-599)BVBBV048538806 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01657nam a22004578c 4500</leader><controlfield tag="001">BV048538806</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230425 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221102s2022 ii a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9391392571</subfield><subfield code="c">paperback</subfield><subfield code="9">93-91392-57-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789391392574</subfield><subfield code="c">paperback</subfield><subfield code="9">978-93-91392-57-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1378503026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048538806</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ii</subfield><subfield code="c">XB-IN</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gridin, Ivan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time series forecasting using deep learning</subfield><subfield code="b">combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions</subfield><subfield code="c">Ivan Gridin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Delhi, India</subfield><subfield code="b">BPB Publications</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 289 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">sti</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vorhersagbarkeit</subfield><subfield code="0">(DE-588)4260601-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Deep learning (Machine learning)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Time-series analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Vorhersagbarkeit</subfield><subfield code="0">(DE-588)4260601-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033915352</subfield></datafield></record></collection> |
id | DE-604.BV048538806 |
illustrated | Illustrated |
index_date | 2024-07-03T20:54:44Z |
indexdate | 2024-08-01T11:32:10Z |
institution | BVB |
isbn | 9391392571 9789391392574 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033915352 |
oclc_num | 1378503026 |
open_access_boolean | |
owner | DE-862 DE-BY-FWS |
owner_facet | DE-862 DE-BY-FWS |
physical | xxiii, 289 Seiten Illustrationen |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | BPB Publications |
record_format | marc |
spellingShingle | Gridin, Ivan Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions Künstliche Intelligenz (DE-588)4033447-8 gnd Deep learning (DE-588)1135597375 gnd Vorhersagbarkeit (DE-588)4260601-9 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)1135597375 (DE-588)4260601-9 |
title | Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions |
title_auth | Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions |
title_exact_search | Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions |
title_exact_search_txtP | Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions |
title_full | Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions Ivan Gridin |
title_fullStr | Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions Ivan Gridin |
title_full_unstemmed | Time series forecasting using deep learning combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions Ivan Gridin |
title_short | Time series forecasting using deep learning |
title_sort | time series forecasting using deep learning combining pytorch rnn tcn and deep neural network models to provide production ready prediction solutions |
title_sub | combining Pytorch, RNN, TCN, and deep neural network models to provide production-ready prediction solutions |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Deep learning (DE-588)1135597375 gnd Vorhersagbarkeit (DE-588)4260601-9 gnd |
topic_facet | Künstliche Intelligenz Deep learning Vorhersagbarkeit |
work_keys_str_mv | AT gridinivan timeseriesforecastingusingdeeplearningcombiningpytorchrnntcnanddeepneuralnetworkmodelstoprovideproductionreadypredictionsolutions |
Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 302 G847 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |
Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 302 G847 |
---|---|
Exemplar 1 | ausleihbar Checked out – Rückgabe bis: 31.12.2099 Vormerken |