Modelling puzzles in first order logic:
Keeping students involved and actively learning is challenging. Instructors in computer science are aware of the cognitive value of modelling puzzles and often use logical puzzles as an efficient pedagogical instrument to engage students and develop problem-solving skills. This unique book is a comp...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2021]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Keeping students involved and actively learning is challenging. Instructors in computer science are aware of the cognitive value of modelling puzzles and often use logical puzzles as an efficient pedagogical instrument to engage students and develop problem-solving skills. This unique book is a comprehensive resource that offers teachers and students fun activities to teach and learn logic. It provides new, complete, and running formalisation in Propositional and First Order Logic for over 130 logical puzzles, including Sudoku-like puzzles, zebra-like puzzles, island of truth, lady and tigers, grid puzzles, strange numbers, or self-reference puzzles. Solving puzzles with theorem provers can be an effective cognitive incentive to motivate students to learn logic. They will find a ready-to-use format which illustrates how to model each puzzle, provides running implementations, and explains each solution. This concise and easy-to-follow textbook is a much-needed support tool for students willing to explore beyond the introductory level of learning logic and lecturers looking for examples to heighten student engagement in their computer science courses. |
Beschreibung: | xv, 338 Seiten Illustrationen, Diagramme 24 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048537536 | ||
003 | DE-604 | ||
005 | 20230224 | ||
007 | t | ||
008 | 221031s2021 a||| |||| 00||| eng d | ||
020 | |z 9783030625467 |9 978-3-030-62546-7 | ||
020 | |z 303062546X |9 3-030-62546-X | ||
035 | |a (OCoLC)1369549309 | ||
035 | |a (DE-599)BVBBV048537536 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
084 | |a SN 300 |0 (DE-625)143331: |2 rvk | ||
100 | 1 | |a Groza, Adrian |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1279665343 |4 aut | |
245 | 1 | 0 | |a Modelling puzzles in first order logic |c Adrian Groza |
264 | 1 | |a Cham, Switzerland |b Springer |c [2021] | |
300 | |a xv, 338 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Preface -- Getting Started with Prover9 and Mace4 -- Micro Arithmetic Puzzles -- Strange Numbers -- Practical Puzzles -- Lady and Tigers -- Einstein Puzzles -- Island of Truth -- Love and Marriage -- Grid Puzzles -- Japanese Puzzles -- Russian Puzzles -- Polyomino Puzzles -- Self-reference and Other Puzzles -- Epigraph in Natural Language | |
520 | |a Keeping students involved and actively learning is challenging. Instructors in computer science are aware of the cognitive value of modelling puzzles and often use logical puzzles as an efficient pedagogical instrument to engage students and develop problem-solving skills. This unique book is a comprehensive resource that offers teachers and students fun activities to teach and learn logic. It provides new, complete, and running formalisation in Propositional and First Order Logic for over 130 logical puzzles, including Sudoku-like puzzles, zebra-like puzzles, island of truth, lady and tigers, grid puzzles, strange numbers, or self-reference puzzles. Solving puzzles with theorem provers can be an effective cognitive incentive to motivate students to learn logic. They will find a ready-to-use format which illustrates how to model each puzzle, provides running implementations, and explains each solution. This concise and easy-to-follow textbook is a much-needed support tool for students willing to explore beyond the introductory level of learning logic and lecturers looking for examples to heighten student engagement in their computer science courses. | ||
650 | 4 | |a Logic puzzles | |
650 | 4 | |a Casse-tête logiques | |
650 | 7 | |a Logic puzzles |2 fast | |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logikspiel |0 (DE-588)1069630357 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Logikspiel |0 (DE-588)1069630357 |D s |
689 | 0 | 1 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033914113&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033914113 |
Datensatz im Suchindex
_version_ | 1804184535844257792 |
---|---|
adam_text | Contents 1 Getting Started with Prover9 and Mace4............................ 1.1 Installing Prover9 and Mace4........................................................... 1.2 Finding Proofs.................................................................................... 1.3 Finding Models.................................................................................. References..................................................................................................... 1 1 2 5 9 2 Micro-arithmetic Puzzles........................................................................... Logic equation.............................................................................................. Logic equation.............................................................................................. Logic equation 5x5 .................................................................................. Logic equation 9x9.................................................................................. Three squares................................................................................................ Pocket money................................................................................................ Dividing the legacy....................................................................................... Boys and girls.............................................................................................. Robinson’s age.............................................................................................. Five cards
..................................................................................................... A square family........................................................................................... Family ages.................................................................................................. Reference....................................................................................................... 11 12 14 15 16 17 18 18 19 20 21 22 23 24 3 Strange Numbers....................................................................................... Adding their cubes....................................................................................... Multiplication................................................................................................ The arithmetical cabby................................................................................ The ten barrels.............................................................................................. Find the triangle........................................................................................... A digital difficulty......................................................................................... The archery match....................................................................................... Target practice.............................................................................................. 25 27 28 29 30 32 33 35 37 xi
xii Contents The nine barrels........................................................................................... Upside-down year......................................................................................... Rotate digits.................................................................................................. An unusual number....................................................................................... References..................................................................................................... 39 41 43 44 45 4 Practical Puzzles......................................................................................... Letter to parents........................................................................................... Ambiguous dates......................................................................................... One landlord and 100 servants .................................................................. No consecutive numbersin adjacent nodes................................................. Colouring Dracula’s land in red.................................................................. Golomb ruler................................................................................................ Two cube calendar....................................................................................... How many routes?....................................................................................... Going to
church........................................................................................... Buying wine.................................................................................................. Railway routes.............................................................................................. A stolen balsam........................................................................................... References..................................................................................................... 47 49 50 51 52 54 57 59 60 62 65 69 72 74 5 Lady and Tigers......................................................................................... Ladies and tigers in jail................................................................................ The trials of the second day...................................................................... Ladies only.................................................................................................. Fourth day: Ladies are honest but tigers are liars................................... Fifth day....................................................................................................... Sixth day....................................................................................................... Seventh day.................................................................................................. Eighth day..................................................................................................... Ninth day: three
rooms................................................................................ A lady and two tigers.................................................................................. A lady, a tiger, and an empty room........................................................... A logic labyrinth......................................................................................... References..................................................................................................... 75 76 78 80 82 84 86 88 90 92 94 96 99 102 6 Einstein Puzzles ......................................................................................... The magisterial bench.................................................................................. Ships.............................................................................................................. The ladies of the committee...................................................................... Cocktail party................................................................................................ Borrowed books........................................................................................... Baseball coach dilemma............................................................................. Perfect man.................................................................................................. Four bikers..................................................................................................... 103 104 106 107 110 Ill 114 117 119
Contents xiii Movies night................................................................................................ Secret Santa.................................................................................................. Seating the party........................................................................................... Passengers in a railroad compartment........................................................ References..................................................................................................... 121 124 126 128 130 7 Island of Truth........................................................................................... We are both knaves............................................................................... At least one of us is a knave...................................................................... Either I am a knave or ծ is a knight........................................................ We are both the same.................................................................................. Three inhabitants and twomessages............................................................ Three inhabitants and not enough information........................................ Three inhabitants and two of the same type............................................. Jim, Jon, and Joe......................................................................................... A spy appears................................................................................................ Who is the
spy?........................................................................................... The whole truth and nothing but the truth............................................... Three goddesses........................................................................................... References..................................................................................................... 131 132 135 137 140 141 145 147 150 152 154 156 158 161 8 Love and Marriage.......................................................................... Looking at unmarried people...................................................................... Married people do not lie........................................................................... Minos and aminos: we are both married................................................... Minos and aminos: we are both married or both unmarried................... Marriage in company.................................................................................. What is my relationship to Teresa?................................................... Who is Helen’s husband?........................................................................... Arranged royal marriage............................................................................. Two single persons at the end of the row................................................. Five couples.................................................................................................. A family
tree................................................................................................ Uncles and aunts......................................................................................... References..................................................................................................... 163 164 165 167 169 171 172 175 177 179 180 182 189 193 9 Grid Puzzles................................................................................................ A five in the middle of a grid.................................................................... Roses, shamrocks, and thistles.................................................................... Nine squares.................................................................................................. Latin square.................................................................................................. Magic square................................................................................................ Magic five-pointed star................................................................................ Fort Garrisons ............................................................................... Three in a row.............................................................................................. 195 196 198 199 200 202 204 206 207
xiv Contents Star battle....................................................................................................... 211 Star battle reloaded....................................................................................... 213 Fancy queens................................................................................................ 215 Playing minesweeper.................................................................................. 216 References..................................................................................................... 220 10 Japanese Puzzles......................................................................................... Killer Sudoku................................................................................................ Futoshiki....................................................................................................... Kaos Sudoku................................................................................................ Kakurasu...................................................................... Takuzu............................................................................................................ Kakuro............................................................................................................ Daily neighbours......................................................................................... Kendoku....................................................................................................... Magic
labyrinth........................................................................................... Stars and arrows........................................................................................... Tents and trees................................................................. Sun and moon.............................................................................................. References..................................................................................................... 221 222 225 226 228 231 234 236 237 240 243 246 249 253 11 Russian Puzzles........................................................................................... Arranging flags.............................................................................................. Keep it even.................................................................................................. A magic triangle........................................................................................... From 1 through 19....................................................................................... A duel in arithmetic.................................................................................... Twenty............................................................................................................ Order the numbers....................................................................................... A mysterious box......................................................................................... The courageous
garrison............................................................................. A grouping of integers 1 through 15........................................................ A star.............................................................................................................. The hexagon.................................................................................................. Reference....................................................................................................... 255 256 257 259 262 266 268 269 271 273 275 276 277 279 12 Polyomino Puzzles....................................................................................... Broken chess row......................................................................................... A simple polyomino.................................................................................... Rotating polyomino.................................................................................... Ten-Yen......................................................................................................... Rotating Ten-Yen......................................................................................... A 4 x 5 rectangle......................................................................................... The 12 pentominoes.................................................................................... Importing six pentominoes......................................................................... 281 282 285 286 290 293 295 297 302
Contents XV Importing other six pentominoes............................................................... Twelve pentominoes on a chessboard........................................................ Five tetrominoes on a strange shape........................................................... A cut-up chessboard.................................................................................... References..................................................................................................... 306 308 309 313 317 Self-reference and Other Puzzles............................................................. Tricky messages........................................................................................... Not so tricky messages................................................................................ Self-referring sentences................................................................................ Which hand?................................................................................................ An ornament for a window......................................................................... At the brook.................................................................................................. A car tour..................................................................................................... A diamond ring........................................................................................... Drinker paradox........................................................................................... Ten
sentences................................................................................................ Ten sentences relaxed.................................................................................. Self-counting sentence.................................................................................. References..................................................................................................... 319 320 321 322 323 324 325 327 329 330 332 333 334 335 Appendix A: The Epigraph Puzzle................................................................ 337 13
|
adam_txt |
Contents 1 Getting Started with Prover9 and Mace4. 1.1 Installing Prover9 and Mace4. 1.2 Finding Proofs. 1.3 Finding Models. References. 1 1 2 5 9 2 Micro-arithmetic Puzzles. Logic equation. Logic equation. Logic equation 5x5 . Logic equation 9x9. Three squares. Pocket money. Dividing the legacy. Boys and girls. Robinson’s age. Five cards
. A square family. Family ages. Reference. 11 12 14 15 16 17 18 18 19 20 21 22 23 24 3 Strange Numbers. Adding their cubes. Multiplication. The arithmetical cabby. The ten barrels. Find the triangle. A digital difficulty. The archery match. Target practice. 25 27 28 29 30 32 33 35 37 xi
xii Contents The nine barrels. Upside-down year. Rotate digits. An unusual number. References. 39 41 43 44 45 4 Practical Puzzles. Letter to parents. Ambiguous dates. One landlord and 100 servants . No consecutive numbersin adjacent nodes. Colouring Dracula’s land in red. Golomb ruler. Two cube calendar. How many routes?. Going to
church. Buying wine. Railway routes. A stolen balsam. References. 47 49 50 51 52 54 57 59 60 62 65 69 72 74 5 Lady and Tigers. Ladies and tigers in jail. The trials of the second day. Ladies only. Fourth day: Ladies are honest but tigers are liars. Fifth day. Sixth day. Seventh day. Eighth day. Ninth day: three
rooms. A lady and two tigers. A lady, a tiger, and an empty room. A logic labyrinth. References. 75 76 78 80 82 84 86 88 90 92 94 96 99 102 6 Einstein Puzzles . The magisterial bench. Ships. The ladies of the committee. Cocktail party. Borrowed books. Baseball coach dilemma. Perfect man. Four bikers. 103 104 106 107 110 Ill 114 117 119
Contents xiii Movies night. Secret Santa. Seating the party. Passengers in a railroad compartment. References. 121 124 126 128 130 7 Island of Truth. We are both knaves. At least one of us is a knave. Either I am a knave or ծ is a knight. We are both the same. Three inhabitants and twomessages. Three inhabitants and not enough information. Three inhabitants and two of the same type. Jim, Jon, and Joe. A spy appears. Who is the
spy?. The whole truth and nothing but the truth. Three goddesses. References. 131 132 135 137 140 141 145 147 150 152 154 156 158 161 8 Love and Marriage. Looking at unmarried people. Married people do not lie. Minos and aminos: we are both married. Minos and aminos: we are both married or both unmarried. Marriage in company. What is my relationship to Teresa?. Who is Helen’s husband?. Arranged royal marriage. Two single persons at the end of the row. Five couples. A family
tree. Uncles and aunts. References. 163 164 165 167 169 171 172 175 177 179 180 182 189 193 9 Grid Puzzles. A five in the middle of a grid. Roses, shamrocks, and thistles. Nine squares. Latin square. Magic square. Magic five-pointed star. Fort Garrisons . Three in a row. 195 196 198 199 200 202 204 206 207
xiv Contents Star battle. 211 Star battle reloaded. 213 Fancy queens. 215 Playing minesweeper. 216 References. 220 10 Japanese Puzzles. Killer Sudoku. Futoshiki. Kaos Sudoku. Kakurasu. Takuzu. Kakuro. Daily neighbours. Kendoku. Magic
labyrinth. Stars and arrows. Tents and trees. Sun and moon. References. 221 222 225 226 228 231 234 236 237 240 243 246 249 253 11 Russian Puzzles. Arranging flags. Keep it even. A magic triangle. From 1 through 19. A duel in arithmetic. Twenty. Order the numbers. A mysterious box. The courageous
garrison. A grouping of integers 1 through 15. A star. The hexagon. Reference. 255 256 257 259 262 266 268 269 271 273 275 276 277 279 12 Polyomino Puzzles. Broken chess row. A simple polyomino. Rotating polyomino. Ten-Yen. Rotating Ten-Yen. A 4 x 5 rectangle. The 12 pentominoes. Importing six pentominoes. 281 282 285 286 290 293 295 297 302
Contents XV Importing other six pentominoes. Twelve pentominoes on a chessboard. Five tetrominoes on a strange shape. A cut-up chessboard. References. 306 308 309 313 317 Self-reference and Other Puzzles. Tricky messages. Not so tricky messages. Self-referring sentences. Which hand?. An ornament for a window. At the brook. A car tour. A diamond ring. Drinker paradox. Ten
sentences. Ten sentences relaxed. Self-counting sentence. References. 319 320 321 322 323 324 325 327 329 330 332 333 334 335 Appendix A: The Epigraph Puzzle. 337 13 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Groza, Adrian ca. 20./21. Jh |
author_GND | (DE-588)1279665343 |
author_facet | Groza, Adrian ca. 20./21. Jh |
author_role | aut |
author_sort | Groza, Adrian ca. 20./21. Jh |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV048537536 |
classification_rvk | SN 300 |
contents | Preface -- Getting Started with Prover9 and Mace4 -- Micro Arithmetic Puzzles -- Strange Numbers -- Practical Puzzles -- Lady and Tigers -- Einstein Puzzles -- Island of Truth -- Love and Marriage -- Grid Puzzles -- Japanese Puzzles -- Russian Puzzles -- Polyomino Puzzles -- Self-reference and Other Puzzles -- Epigraph in Natural Language |
ctrlnum | (OCoLC)1369549309 (DE-599)BVBBV048537536 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03036nam a2200409 c 4500</leader><controlfield tag="001">BV048537536</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230224 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221031s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030625467</subfield><subfield code="9">978-3-030-62546-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">303062546X</subfield><subfield code="9">3-030-62546-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1369549309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048537536</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SN 300</subfield><subfield code="0">(DE-625)143331:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Groza, Adrian</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1279665343</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling puzzles in first order logic</subfield><subfield code="c">Adrian Groza</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 338 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface -- Getting Started with Prover9 and Mace4 -- Micro Arithmetic Puzzles -- Strange Numbers -- Practical Puzzles -- Lady and Tigers -- Einstein Puzzles -- Island of Truth -- Love and Marriage -- Grid Puzzles -- Japanese Puzzles -- Russian Puzzles -- Polyomino Puzzles -- Self-reference and Other Puzzles -- Epigraph in Natural Language</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Keeping students involved and actively learning is challenging. Instructors in computer science are aware of the cognitive value of modelling puzzles and often use logical puzzles as an efficient pedagogical instrument to engage students and develop problem-solving skills. This unique book is a comprehensive resource that offers teachers and students fun activities to teach and learn logic. It provides new, complete, and running formalisation in Propositional and First Order Logic for over 130 logical puzzles, including Sudoku-like puzzles, zebra-like puzzles, island of truth, lady and tigers, grid puzzles, strange numbers, or self-reference puzzles. Solving puzzles with theorem provers can be an effective cognitive incentive to motivate students to learn logic. They will find a ready-to-use format which illustrates how to model each puzzle, provides running implementations, and explains each solution. This concise and easy-to-follow textbook is a much-needed support tool for students willing to explore beyond the introductory level of learning logic and lecturers looking for examples to heighten student engagement in their computer science courses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic puzzles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Casse-tête logiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic puzzles</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logikspiel</subfield><subfield code="0">(DE-588)1069630357</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Logikspiel</subfield><subfield code="0">(DE-588)1069630357</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033914113&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033914113</subfield></datafield></record></collection> |
id | DE-604.BV048537536 |
illustrated | Illustrated |
index_date | 2024-07-03T20:54:27Z |
indexdate | 2024-07-10T09:40:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033914113 |
oclc_num | 1369549309 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | xv, 338 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer |
record_format | marc |
spelling | Groza, Adrian ca. 20./21. Jh. Verfasser (DE-588)1279665343 aut Modelling puzzles in first order logic Adrian Groza Cham, Switzerland Springer [2021] xv, 338 Seiten Illustrationen, Diagramme 24 cm txt rdacontent n rdamedia nc rdacarrier Preface -- Getting Started with Prover9 and Mace4 -- Micro Arithmetic Puzzles -- Strange Numbers -- Practical Puzzles -- Lady and Tigers -- Einstein Puzzles -- Island of Truth -- Love and Marriage -- Grid Puzzles -- Japanese Puzzles -- Russian Puzzles -- Polyomino Puzzles -- Self-reference and Other Puzzles -- Epigraph in Natural Language Keeping students involved and actively learning is challenging. Instructors in computer science are aware of the cognitive value of modelling puzzles and often use logical puzzles as an efficient pedagogical instrument to engage students and develop problem-solving skills. This unique book is a comprehensive resource that offers teachers and students fun activities to teach and learn logic. It provides new, complete, and running formalisation in Propositional and First Order Logic for over 130 logical puzzles, including Sudoku-like puzzles, zebra-like puzzles, island of truth, lady and tigers, grid puzzles, strange numbers, or self-reference puzzles. Solving puzzles with theorem provers can be an effective cognitive incentive to motivate students to learn logic. They will find a ready-to-use format which illustrates how to model each puzzle, provides running implementations, and explains each solution. This concise and easy-to-follow textbook is a much-needed support tool for students willing to explore beyond the introductory level of learning logic and lecturers looking for examples to heighten student engagement in their computer science courses. Logic puzzles Casse-tête logiques Logic puzzles fast Modellierung (DE-588)4170297-9 gnd rswk-swf Logikspiel (DE-588)1069630357 gnd rswk-swf Logikspiel (DE-588)1069630357 s Modellierung (DE-588)4170297-9 s DE-604 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033914113&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Groza, Adrian ca. 20./21. Jh Modelling puzzles in first order logic Preface -- Getting Started with Prover9 and Mace4 -- Micro Arithmetic Puzzles -- Strange Numbers -- Practical Puzzles -- Lady and Tigers -- Einstein Puzzles -- Island of Truth -- Love and Marriage -- Grid Puzzles -- Japanese Puzzles -- Russian Puzzles -- Polyomino Puzzles -- Self-reference and Other Puzzles -- Epigraph in Natural Language Logic puzzles Casse-tête logiques Logic puzzles fast Modellierung (DE-588)4170297-9 gnd Logikspiel (DE-588)1069630357 gnd |
subject_GND | (DE-588)4170297-9 (DE-588)1069630357 |
title | Modelling puzzles in first order logic |
title_auth | Modelling puzzles in first order logic |
title_exact_search | Modelling puzzles in first order logic |
title_exact_search_txtP | Modelling puzzles in first order logic |
title_full | Modelling puzzles in first order logic Adrian Groza |
title_fullStr | Modelling puzzles in first order logic Adrian Groza |
title_full_unstemmed | Modelling puzzles in first order logic Adrian Groza |
title_short | Modelling puzzles in first order logic |
title_sort | modelling puzzles in first order logic |
topic | Logic puzzles Casse-tête logiques Logic puzzles fast Modellierung (DE-588)4170297-9 gnd Logikspiel (DE-588)1069630357 gnd |
topic_facet | Logic puzzles Casse-tête logiques Modellierung Logikspiel |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033914113&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grozaadrian modellingpuzzlesinfirstorderlogic |