The 4Ds of energy transition: decarbonization, decentralization, decreasing use and digitalization
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xviii, 414 Seiten Illustrationen, Diagramme (überwiegend farbig) |
ISBN: | 9783527348824 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048462268 | ||
003 | DE-604 | ||
005 | 20230427 | ||
007 | t| | ||
008 | 220908s2022 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 1248828771 |2 DE-101 | |
020 | |a 9783527348824 |c hbk. |9 978-3-527-34882-4 | ||
035 | |a (OCoLC)1342619103 | ||
035 | |a (DE-599)DNB1248828771 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-703 |a DE-20 |a DE-573 |a DE-11 | ||
084 | |a AR 26300 |0 (DE-625)8599: |2 rvk | ||
084 | |a RB 10690 |0 (DE-625)142220:12824 |2 rvk | ||
084 | |a ZP 3700 |0 (DE-625)157967: |2 rvk | ||
084 | |a 620 |2 23sdnb | ||
245 | 1 | 0 | |a The 4Ds of energy transition |b decarbonization, decentralization, decreasing use and digitalization |c edited by Muhammad Asif |
246 | 1 | 3 | |a The 4 Ds of energy transition |
246 | 1 | 3 | |a The four Ds of energy transition |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2022] | |
300 | |a xviii, 414 Seiten |b Illustrationen, Diagramme (überwiegend farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Energiewende |0 (DE-588)1210494086 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Technische Innovation |0 (DE-588)4431027-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieeffizienz |0 (DE-588)7660153-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energietechnik |0 (DE-588)4014725-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |2 gnd |9 rswk-swf |
653 | |a Energie | ||
653 | |a Energietechnik | ||
653 | |a Energy | ||
653 | |a Leistungselektronik | ||
653 | |a Nachhaltige u. Grüne Chemie | ||
653 | |a Power Electronics | ||
653 | |a Power Technology & Power Engineering | ||
653 | |a Sustainable Chemistry & Green Chemistry | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Energiewende |0 (DE-588)1210494086 |D s |
689 | 0 | 1 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |D s |
689 | 0 | 2 | |a Energieeffizienz |0 (DE-588)7660153-5 |D s |
689 | 0 | 3 | |a Energietechnik |0 (DE-588)4014725-3 |D s |
689 | 0 | 4 | |a Technische Innovation |0 (DE-588)4431027-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Asif, Muhammad |0 (DE-588)1287181651 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-83144-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-83143-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-83142-5 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033840248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033840248 |
Datensatz im Suchindex
_version_ | 1815695536857022464 |
---|---|
adam_text |
CONTENTS
PREFACE
XV
FOREWORD
XVII
1
INTRODUCTION
TO
THE
FOUR-DIMENSIONAL
ENERGY
TRANSITION
1
MUHAMMAD
ASIF
1.1
ENERGY:
RESOURCES
AND
CONVERSIONS
1
1.2
CLIMATE
CHANGE
IN
FOCUS
3
1.3
THE
UNFOLDING
ENERGY
TRANSITION
4
1.4
THE
FOUR
DIMENSIONS
OF
THE
TWENTY-FIRST
CENTURY
ENERGY
TRANSITION
6
1.4.1
DECARBONIZATION
7
1.4.2
DECENTRALIZATION
7
1.4.3
DIGITALIZATION
8
1.4.4
DECREASING
ENERGY
USE
8
1.5
CONCLUSIONS
8
REFERENCES
9
PART
I
DECARBONIZATION
11
2
GLOBAL
ENERGY
TRANSITION
AND
EXPERIENCES
FROM
CHINA
AND
GERMANY
13
HEIKO
THOMAS
AND
BING
XUE
2.1
GLOBAL
ENERGY
TRANSITION
13
2.2
CHINA
17
2.2.1
HOW
TO
ACHIEVE
CARBON
NEUTRALITY
BEFORE
2060
AND
KEEP
THE
WORLD
'
S
LARGEST
ECONOMY
RUNNING
17
2.2.2
CHINA
AS
THE
WORLD
'
S
LEADER
IN
RENEWABLE
INSTALLATIONS
19
2.2.3
PARTICULAR
MEASURES
TO
REDUCE
GHG
EMISSIONS
20
2.3
GERMANY
23
2.3.1
CLIMATE
ACTION
AND
GHG
EMISSION
REDUCTION
TARGETS
23
2.3.2
SYSTEM
REQUIREMENTS
TO
ACHIEVE
THE
GHG
EMISSION
REDUCTION
GOALS
24
2.3.3
POTENTIAL
FOR
GHG
EMISSION
REDUCTION
IN
THE
BUILDING
SECTOR
27
VI
CONTENTS
2.3.4
2.3.5
UNDERACHIEVING
IN
THE
TRANSPORT
SECTOR
27
A
NEW
EMISSION
TRADING
SCHEME
SPECIFICALLY
TACKLES
THE
HEATING
AND
TRANSPORT
SECTORS
29
2.4
2.4.1
2.4.2
2.4.3
2.5
COMPARING
ENERGY
TRANSITIONS
IN
CHINA
AND
GERMANY
30
DIFFERENT
STRATEGIES
AND
BOUNDARY
CONDITIONS
30
COMPARING
THE
MOBILITY SECTOR
32
POLICY
INSTRUMENTS
AND
IMPLEMENTATION
33
SUMMARY
AND
FINAL
REMARKS
37
REFERENCES
38
3
DECARBONIZATION
IN
THE
ENERGY
SECTOR
41
MUHAMMAD
ASIF
3.1
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
DECARBONIZATION
41
DECARBONIZATION
PATHWAYS
42
RENEWABLE
ENERGY
43
SOLAR
ENERGY
43
WIND
POWER
44
HYDROPOWER
44
ELECTRIC
MOBILITY
44
HYDROGEN
AND
FUEL
CELLS
45
ENERGY
STORAGE
46
ENERGY
EFFICIENCY
46
DECARBONIZATION
OF
FOSSIL
FUEL
SECTOR
46
DECARBONIZATION:
DEVELOPMENTS
AND
TRENDS
47
REFERENCES
48
4
RENEWABLE
TECHNOLOGIES:
APPLICATIONS
AND
TRENDS
51
MUHAMMAD
ASIF
4.1
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.2
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.3.3
INTRODUCTION
51
OVERVIEW
OF
RENEWABLE
TECHNOLOGIES
52
SOLAR
ENERGY
52
SOLAR
PV
52
SOLAR
THERMAL
ENERGY
54
WIND
POWER
57
HYDROPOWER
58
DAM/STORAGE
59
RUN-OF-THE-RIVER
59
PUMPED
STORAGE
59
BIOMASS
60
GEOTHERMAL
ENERGY
61
WAVE
AND
TIDAL
POWER
62
RENEWABLES
ADVANCEMENTS
AND
TRENDS
63
MARKET
GROWTH
63
ECONOMICS
65
TECHNOLOGICAL
ADVANCEMENTS
65
CONTENTS
VII
4.3.4
POWER
DENSITY
67
4.3.5
ENERGY
STORAGE
67
4.4
CONCLUSIONS
69
REFERENCES
69
5
FUNDAMENTALS
AND
APPLICATIONS
OF
HYDROGEN
AND
FUEL
CELLS
73
BENGT
SUNDEN
5.1
INTRODUCTION
73
5.2
HYDROGEN
-
GENERAL
74
5.2.1
PRODUCTION
OF
HYDROGEN
74
5.2.2
STORAGE
OF
HYDROGEN
75
5.2.3
TRANSPORTATION
OF
HYDROGEN
76
5.2.4
CONCERNS
ABOUT
HYDROGEN
76
5.2.5
ADVANTAGES
OF
HYDROGEN
ENERGY
76
5.2.6
DISADVANTAGES
OF
HYDROGEN
ENERGY
76
5.3
BASIC
ELECTROCHEMISTRY
AND
THERMODYNAMICS
77
5.4
FUEL
CELLS
-
OVERVIEW
78
5.4.1
TYPES
OF
FUEL
CELLS
79
5.4.2
PROTON
EXCHANGE
MEMBRANE
FUEL
CELLS
(PEMFC)
OR
POLYMER
ELECTROLYTE
FUEL
CELLS
(PEFC)
83
5.4.2.1
PERFORMANCE
OF
A
PEMFC
83
5.4.3
SOLID
OXIDE
FUEL
CELLS
(SOFC)
83
5.4.4
COMPARISON
OF
PEMFCS
AND
SOFCS
84
5.4.5
OVERALL
DESCRIPTION
OF
BASIC
TRANSPORT
PROCESSES
AND
OPERATIONS
OF
A
FUEL
CELL
85
5.4.5.1
ELECTROCHEMICAL
KINETICS
85
5.4.5.2
HEAT
AND
MASS
TRANSFER
85
5.4.5.3
CHARGE
AND
WATER
TRANSPORT
86
5.4.5.4
HEAT
GENERATION
87
5.4.6
MODELING
APPROACHES
FOR
FUEL
CELLS
87
5.4.6.1
SOFTWARES
89
5.4.7
FUEL
CELL
SYSTEMS
AND
APPLICATIONS
90
5.4.7.1
PORTABLE
POWER
90
5.4.7.2
BACKUP
POWER
91
5.4.7.3
TRANSPORTATION
91
5.4.7.4
STATIONARY
POWER
92
5.4.7.5
MARITIME
APPLICATIONS
93
5.4.7.6
AEROSPACE
APPLICATIONS
94
5.4.7.7
AIRCRAFT
APPLICATIONS
95
5.4.8
BOTTLENECKS
FOR
FUEL
CELLS
95
5.5
CONCLUSIONS
97
ACKNOWLEDGMENTS
97
NOMENCLATURE
97
ABBREVIATIONS
98
REFERENCES
99
VIII
CONTENTS
6
DECARBONIZING
WITH
NUCLEAR
POWER,
CURRENT
BUILDS,
AND
FUTURE
TRENDS
103
HASLIZO
OMAR
F
GEORDIE
GRAETZ,
AND
MARK
HO
6.1
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.7
INTRODUCTION
103
THE
HISTORIC
COST
OF
NUCLEAR
POWER
104
THE
SMALL
MODULAR
REACTOR
(SMR):
COULD
SMALLER
BE
BETTER?
109
NEW
NUCLEAR
REACTOR
IN
TOWN
109
IS
IT
THE
SMALLER
THE
BETTER?
110
EVALUATING
THE
ECONOMIC
COMPETITIVENESS
OF
SMRS
113
SIZE
MATTERS
113
CONSTRUCTION
TIME
113
CO-SITING
ECONOMIES
114
LEARNING
RATES
115
THE
LEVELIZED
COST
OF
ELECTRICITY
(LCOE):
IS
IT
A
RELIABLE
MEASURE?
118
THE
OVERNIGHT
CAPITAL
COST
(OCC):
SMRS
VS.
A
LARGE
REACTOR
120
NUCLEAR
ENERGY:
LOOKING
BEYOND
ITS
PERCEIVED
REPUTATION
123
LOAD-FOLLOWING
AND
COGENERATION
123
INDUSTRIAL HEAT
(DISTRICT
AND
PROCESS)
125
HYDROGEN
PRODUCTION
127
SEAWATER
DESALINATION
130
WESTERN
NUCLEAR
INDUSTRY
TRENDS
131
THE
UNITED
STATES
131
THE
UNITED
KINGDOM
132
CANADA
135
CONCLUSIONS
137
REFERENCES
141
7
DECARBONIZATION
OF
THE
FOSSIL
FUEL
SECTOR
153
TIAN
GOH
AND
BENG
WAH
ANG
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.6
INTRODUCTION
153
TECHNOLOGIES
FOR
THE
DECARBONIZATION
OF
THE
FOSSIL
FUEL
SECTOR
154
HISTORICAL
DEVELOPMENTS
154
HYDROGEN
ECONOMY
155
CARBON
CAPTURE
AND
STORAGE
156
RECENT
ADVANCEMENTS
AND
POTENTIAL
157
CARBON
CAPTURE
AND
STORAGE
158
CARBON
CAPTURE
AND
UTILIZATION
158
FUTURE
EMISSION
SCENARIOS
AND
CHALLENGES
TO
DECARBONIZATION
160
APPLICATION
IN
FUTURE
EMISSION
SCENARIOS
160
CHALLENGES
TO
DECARBONIZATION
164
CONTROVERSIES
AND
DEBATES
167
OPPOSING
NARRATIVES
167
PUBLIC
PERCEPTIONS
169
CONCLUSIONS
171
REFERENCES
172
CONTENTS
IX
8
ELECTRIC
VEHICLE
ADOPTION
DYNAMICS
ON
THE
ROAD
TO
DEEP
DECARBONIZATION
177
EMIL
DIMANCHEV,
DAVOOD
QORBANI,
AND
MAGNUS
KORPDS
8.1
INTRODUCTION
177
8.2
CURRENT
STATE
OF
ELECTRIC
VEHICLES
178
8.2.1
ELECTRIC
VEHICLE
TECHNOLOGY
178
8.2.2
ELECTRIC
VEHICLE
ENVIRONMENTAL
ATTRIBUTES
179
8.2.3
COMPETING
LOW-CARBON
VEHICLE
TECHNOLOGIES
180
8.3
CONTRIBUTION
OF
ROAD
TRANSPORT
TO
DECARBONIZATION
POLICY
181
8.3.1
STATE
AND
TRENDS
OF
CO
2
EMISSIONS
FROM
TRANSPORTATION
AND
PASSENGER
VEHICLES
181
8.3.2
DECARBONIZATION
OF
TRANSPORT
182
8.3.3
DECARBONIZATION
PATHWAYS
FOR
PASSENGER
VEHICLES
AND
THE
ROLE
OF
ELECTRIC
VEHICLES
183
8.4
DYNAMICS
OF
VEHICLE
FLEET
TURNOVER
190
8.4.1
ILLUSTRATIVE
FLEET
TURNOVER
MODEL
190
8.4.2
IMPLICATIONS
OF
FLEET
TURNOVER
DYNAMICS
FOR
MEETING
DECARBONIZATION
TARGETS
191
8.5
ELECTRIC
VEHICLE
POLICY
194
8.5.1
CASE
STUDY
OF
ELECTRIC
VEHICLE
POLICY
IN
NORWAY
195
8.6
PROSPECTS
FOR
ELECTRIC
VEHICLE
TECHNOLOGY
AND
ECONOMICS
196
8.7
CONCLUSIONS
199
REFERENCES
200
9
INTEGRATED
ENERGY
SYSTEM: A
LOW-CARBON
FUTURE
ENABLER
207
PENGFEI
ZHAO,
CHENGHONG
GU,
ZHIDONG
CAO,
AND
SHUANGQI
LI
9.1
PARADIGM
SHIFT
IN
ENERGY
SYSTEMS
207
9.2
KEY
TECHNOLOGIES
IN
INTEGRATED
ENERGY
SYSTEMS
210
9.2.1
CONVERSION
TECHNOLOGIES
211
9.2.1.1
COMBINED
HEAT
AND
POWER
211
9.2.1.2
HEAT
PUMP
AND
GAS
FURNACE
211
9.2.1.3
POWER
TO
GAS
211
9.2.1.4
GAS
STORAGE
212
9.2.1.5
BATTERY
ENERGY
STORAGE
SYSTEMS
212
9.2.2
ENERGY
HUB
SYSTEMS
213
9.2.3
MODELING
OF
INTEGRATED
ENERGY
SYSTEMS
214
9.3
MANAGEMENT
OF
INTEGRATED
ENERGY
SYSTEMS
215
9.3.1
OPTIMIZATION
TECHNIQUES
FOR
INTEGRATED
ENERGY
SYSTEMS
215
9.3.1.1
STOCHASTIC
OPTIMIZATION
215
9.3.1.2
ROBUST
OPTIMIZATION
215
9.3.1.3
DISTRIBUTIONALLY
ROBUST
OPTIMIZATION
217
9.3.2
SUPPLY
QUALITY
ISSUES
217
9.3.2.1
VOLTAGE
ISSUES
217
9.3.2.2
GAS
QUALITY
ISSUES
218
X
CONTENTS
9.4
9.4.1
9.4.2
9.4.2.1
9.4.2.2
9.4.23
9.4.3
9.43.1
9.43.2
9.4.33
9.5
A
A.1
A.2
A3
VOLT-PRESSURE
OPTIMIZATION
FOR
INTEGRATED
ENERGY
SYSTEMS
219
RESEARCH
GAP
219
PROBLEM
FORMULATION
220
DAY-AHEAD
CONSTRAINTS
OF
VPO
220
REAL-TIME
CONSTRAINTS
OF
VPO
222
OBJECTIVE
FUNCTION
OF
TWO-STAGE
VPO
222
RESULTS
AND
DISCUSSIONS
223
STUDIES
ON
WO
223
STUDIES
ON
ECONOMIC
PERFORMANCE
227
STUDIES
ON
GAS
QUALITY
MANAGEMENT
228
CONCLUSIONS
229
APPENDIX:
NOMENCLATURE
230
INDICES
AND
SETS
230
PARAMETERS
230
VARIABLES
AND
FUNCTIONS
232
REFERENCES
233
PART
II
DECREASING
USE
239
10
DECREASING
THE
USE
OF
ENERGY
FOR
SUSTAINABLE
ENERGY
TRANSITION
241
MUHAMMAD
ASIF
10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
WHY
DECREASE
THE
USE
OF
ENERGY?
241
ENERGY
EFFICIENCY
APPROACHES
243
CHANGE
OF
ATTITUDE
243
PERFORMANCE
ENHANCEMENT
244
NEW
TECHNOLOGIES
244
SCOPE
OF
ENERGY
EFFICIENCY
244
REFERENCES
245
11
ENERGY
CONSERVATION
AND
MANAGEMENT
IN
BUILDINGS
247
WAHHAJ
AHMED
AND
MUHAMMAD
ASIF
11.1
11.2
11.3
11.3.1
11.3.2
11.4
11.4.1
11.4.1.1
11.4.1.2
11.4.1.3
11.5
11.6
ENERGY
AND
ENVIRONMENTAL
FOOTPRINT
OF
BUILDINGS
247
ENERGY-EFFICIENCY
POTENTIAL
IN
BUILDINGS
248
ENERGY-EFFICIENT
DESIGN
STRATEGIES
250
PASSIVE
AND
ACTIVE
DESIGN
STRATEGIES
251
ENERGY
MODELING
TO
DESIGN
ENERGY-EFFICIENT
STRATEGIES
251
BUILDING
ENERGY
RETROFIT
255
BUILDING
ENERGY-RETROFIT
CLASSIFICATIONS
256
PRE
AND
POST-RETROFIT
ASSESSMENT
STRATEGIES
256
NUMBER
AND
TYPE
OF
EEMS
257
MODELING
AND
DESIGN
APPROACH
258
SUSTAINABLE
BUILDING
STANDARDS
AND
CERTIFICATION
SYSTEMS
260
CONCLUSIONS
261
REFERENCES
261
CONTENTS
XI
12
METHODOLOGIES
FOR
THE
ANALYSIS
OF
ENERGY
CONSUMPTION
IN
THE
INDUSTRIAL
SECTOR
267
VINCENZO
BIANCO
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.3
12.4
12.4.1
12.4.2
12.5
12.6
INTRODUCTION
267
OVERVIEW
OF
BASIC
INDEXES
FOR
ENERGY
CONSUMPTION
ANALYSIS
269
COMPOUND
ANNUAL
GROWTH
RATE
(CAGR)
269
ENERGY
CONSUMPTION
ELASTICITY
(ECE)
270
ENERGY
INTENSITY
(EI)
270
LINEAR
CORRELATION
INDEX
(LCI)
271
WEATHER
ADJUSTING
COEFFICIENT
(WAC)
271
DECOMPOSITION
ANALYSIS
OF
ENERGY
CONSUMPTION
272
CASE
STUDY:
THE
ITALIAN
INDUSTRIAL
SECTOR
274
INDEX-BASED
ANALYSIS
274
DECOMPOSITION
OF
ENERGY
CONSUMPTION
276
RELATIONSHIP
BETWEEN
ENERGY
EFFICIENCY
AND
ENERGY
TRANSITION
283
CONCLUSIONS
284
REFERENCES
285
PART
III
DECENTRALIZATION
287
13
DECENTRALIZATION
IN
ENERGY
SECTOR
289
MUHAMMAD
ASIF
13.1
13.2
13.2.1
13.2.2
13.3
13.3.1
13.3.1.1
13.3.1.2
13.3.1.3
13.3.1.4
13.3.1.5
13.3.1.6
13.3.1.7
13.3.1.8
13.3.1.9
13.3.2
13.3.2.1
13.3.2.2
13.3.2.3
13.3.2.4
13.4
INTRODUCTION
289
OVERVIEW
OF
DECENTRALIZED
GENERATION
SYSTEMS
290
CLASSIFICATION
290
TECHNOLOGIES
292
DECENTRALIZED
AND
CENTRALIZED
GENERATION
-
A
COMPARISON
293
ADVANTAGES
OF
DECENTRALIZED
GENERATION
293
COST-EFFECTIVENESS
293
ENHANCED
ENERGY
ACCESS
293
ENVIRONMENT
FRIENDLINESS
294
SECURITY
294
RELIABILITY
294
PEAK
SHAVING
294
SUPPLY RESILIENCE
294
NEW
BUSINESS
STREAMS
294
OTHER
BENEFITS
295
DISADVANTAGES
OF
DECENTRALIZED
GENERATION
295
POWER
QUALITY
295
EFFECT
ON
GIRD
STABILITY
295
ENERGY
STORAGE
REQUIREMENT
295
INSTITUTIONAL
RESISTANCE
295
DEVELOPMENTS
AND
TRENDS
295
REFERENCES
296
XII
CONTENTS
14
DECENTRALIZING
THE
ELECTRICITY
INFRASTRUCTURE:
WHAT
IS
ECONOMICALLY
VIABLE?
299
MORITZ
VOGEL,
MARION
WINGENBACH,
AND
DIERK
BAUKNECHT
14.1
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.5
14.5.1
14.5.2
14.5.3
14.6
14.6.1
14.6.2
14.6.3
14.6.4
14.7
INTRODUCTION
299
DECENTRALIZATION
OF
ELECTRICITY
SYSTEMS
300
TECHNOLOGICAL
DIMENSIONS
OF
DECENTRALIZATION
301
GRID
LEVEL
OF
POWER
PLANTS
302
REGIONAL
DISTRIBUTION
OF
POWER
PLANTS
302
GRID
LEVEL
OF
FLEXIBILITY
OPTIONS
302
LEVEL
OF
OPTIMIZATION
303
DECENTRALIZATION:
COSTS
AND
BENEFITS
303
GRID
LEVEL
OF
POWER
PLANTS
304
REGIONAL
DISTRIBUTION OF
POWER
PLANTS
305
GRID
LEVEL
OF
FLEXIBILITY
OPTIONS
306
LEVEL
OF
OPTIMIZATION
307
GERMANY
'
S
DECENTRALIZATION
EXPERIENCE:
A
CASE
STUDY
310
SYSTEM
COST
310
GRID
EXPANSION
314
KEY
FINDINGS
316
HOW
FAR
SHOULD
DECENTRALIZATION
GO?
317
GRID
LEVEL
OF
POWER
PLANTS
317
REGIONAL
DISTRIBUTION
OF
POWER
PLANTS
317
GRID
LEVEL
OF
FLEXIBILITY
OPTIONS
319
LEVEL
OF
OPTIMIZATION
319
CONCLUSIONS
320
REFERENCES
320
15
GOVERNING
DECENTRALIZED
ELECTRICITY:
TAKING
A
PARTICIPATORY
TURN
325
MARIE
CLAIRE
BRISBOIS
15.1
15.2
INTRODUCTION
325
HOW
IS
DECENTRALIZATION
AFFECTING
TRADITIONAL
MODES
OF
ELECTRICITY
GOVERNANCE?
326
15.2.1
15.3
15.3.1
15.3.2
15.3.3
15.4
STICKING
POINTS
FOR
SHIFTING
TO
DECENTRALIZED
GOVERNANCE
327
WHAT
KINDS
OF
GOVERNANCE
DOES
DECENTRALIZATION
REQUIRE?
328
SECURITY
328
AFFORDABILITY
329
SUSTAINABILITY
331
WHAT
DO
WE
KNOW
ABOUT
DECENTRALIZED
GOVERNANCE
FROM
OTHER
SPHERES?
332
15.4.1
15.4.2
15.4.2.1
15.4.2.2
15.4.2.3
NESTED,
MULTILEVEL
GOVERNANCE
OF
COMMON
POOL
RESOURCES
333
KEY
COMPONENTS OF
COMMON
POOL
RESOURCE
GOVERNANCE
334
ROLES
AND
RESPONSIBILITIES
334
POLICY
COHERENCE
335
CAPACITY
DEVELOPMENT
336
CONTENTS
XIII
15.4.2.4
15.4.2.5
15.4.2.6
15.5
15.5.1
15.5.2
15.5.3
15.6
TRANSPARENT
AND
OPEN
DATA
336
APPROPRIATE
REGULATIONS
337
STAKEHOLDER
PARTICIPATION
338
MOVING
TOWARD
A
DECENTRALIZED
GOVERNANCE
SYSTEM
339
PHASE
ONE
339
PHASE
TWO
340
PHASE
THREE
341
CONCLUSIONS
341
REFERENCES
342
PART
IV
DIGITALIZATION
347
16
DIGITALIZATION
IN
ENERGY
SECTOR
349
MUHAMMAD
ASIF
16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.3
INTRODUCTION
349
OVERVIEW
OF
DIGITAL TECHNOLOGIES
350
ARTIFICIAL
INTELLIGENCE
AND
MACHINE
LEARNING
350
BLOCKCHAIN
351
ROBOTICS
AND
AUTOMATED
TECHNOLOGIES
351
INTERNET
OF
THINGS
351
BIG
DATA
AND
DATA
ANALYTICS
352
DIGITALIZATION:
PROSPECTS
AND
CHALLENGES
352
REFERENCES
354
17
SMART
GRIDS
AND
SMART
METERING
357
HAROON
FAROOQ,
WAQAS
ALI,
AND
INTISAR
A.
SAJJAD
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
INTRODUCTION
357
GRID
MODERNIZATION
AND
ITS
NEED
IN
THE
TWENTY-FIRST
CENTURY
358
SMART
GRID
360
SMART
GRID
VS.
TRADITIONAL
GRID
362
SMART
GRID
COMPOSITION
AND
ARCHITECTURE
362
SMART
GRID
TECHNOLOGIES
365
SMART
METERING
367
ROLE
OF
SMART
METERING
IN
SMART
GRID
369
KEY
CHALLENGES
AND
THE
FUTURE
OF
SMART
GRID
370
IMPLEMENTATION
BENEFITS
AND
POSITIVE
IMPACTS
372
WORLDWIDE
DEVELOPMENT
AND
DEPLOYMENT
373
CONCLUSIONS
375
REFERENCES
376
18
BLOCKCHAIN
IN
ENERGY
381
BERND
TEUFEL
AND
ANTON
SENTIC
18.1
TRANSFORMATION
OF
THE
ELECTRICITY
MARKET
AND
AN
EMERGING
TECHNOLOGY
381
XIV
CONTENTS
18.2
18.2.1
18.2.2
18.2.3
18.2.4
BLOCKCHAIN
IN
THE
ENERGY
SECTOR
382
DEFINING
BLOCKCHAIN
383
UTILIZING
BLOCKCHAIN
IN
ENERGY
SYSTEMS
385
CASE
EXAMPLES
FOR
BLOCKCHAIN
ENERGY
386
UTILIZATION
OF
BLOCKCHAIN
ENERGY:
INTRODUCING
AN
INNOVATION
PERSPECTIVE
387
18.3
18.3.1
18.3.2
BLOCKCHAIN
AS
A
(DISRUPTIVE)
INNOVATION
IN
ENERGY
TRANSITIONS
389
TRANSITION
STUDIES,
REGIMES,
AND
NICHE
INNOVATIONS
389
BLOCKCHAIN
TECHNOLOGIES
BETWEEN
NICHE
INNOVATION
AND
THE
SOCIO-TECHNICAL
SYSTEM
390
18.4
CONCLUSIONS
AND
VENUES
FOR
FURTHER
INQUIRY
392
ACKNOWLEDGMENT
394
REFERENCES
394
EPILOGUE
399
FEREIDOON
SIOSHANSI
INDEX
405 |
adam_txt |
CONTENTS
PREFACE
XV
FOREWORD
XVII
1
INTRODUCTION
TO
THE
FOUR-DIMENSIONAL
ENERGY
TRANSITION
1
MUHAMMAD
ASIF
1.1
ENERGY:
RESOURCES
AND
CONVERSIONS
1
1.2
CLIMATE
CHANGE
IN
FOCUS
3
1.3
THE
UNFOLDING
ENERGY
TRANSITION
4
1.4
THE
FOUR
DIMENSIONS
OF
THE
TWENTY-FIRST
CENTURY
ENERGY
TRANSITION
6
1.4.1
DECARBONIZATION
7
1.4.2
DECENTRALIZATION
7
1.4.3
DIGITALIZATION
8
1.4.4
DECREASING
ENERGY
USE
8
1.5
CONCLUSIONS
8
REFERENCES
9
PART
I
DECARBONIZATION
11
2
GLOBAL
ENERGY
TRANSITION
AND
EXPERIENCES
FROM
CHINA
AND
GERMANY
13
HEIKO
THOMAS
AND
BING
XUE
2.1
GLOBAL
ENERGY
TRANSITION
13
2.2
CHINA
17
2.2.1
HOW
TO
ACHIEVE
CARBON
NEUTRALITY
BEFORE
2060
AND
KEEP
THE
WORLD
'
S
LARGEST
ECONOMY
RUNNING
17
2.2.2
CHINA
AS
THE
WORLD
'
S
LEADER
IN
RENEWABLE
INSTALLATIONS
19
2.2.3
PARTICULAR
MEASURES
TO
REDUCE
GHG
EMISSIONS
20
2.3
GERMANY
23
2.3.1
CLIMATE
ACTION
AND
GHG
EMISSION
REDUCTION
TARGETS
23
2.3.2
SYSTEM
REQUIREMENTS
TO
ACHIEVE
THE
GHG
EMISSION
REDUCTION
GOALS
24
2.3.3
POTENTIAL
FOR
GHG
EMISSION
REDUCTION
IN
THE
BUILDING
SECTOR
27
VI
CONTENTS
2.3.4
2.3.5
UNDERACHIEVING
IN
THE
TRANSPORT
SECTOR
27
A
NEW
EMISSION
TRADING
SCHEME
SPECIFICALLY
TACKLES
THE
HEATING
AND
TRANSPORT
SECTORS
29
2.4
2.4.1
2.4.2
2.4.3
2.5
COMPARING
ENERGY
TRANSITIONS
IN
CHINA
AND
GERMANY
30
DIFFERENT
STRATEGIES
AND
BOUNDARY
CONDITIONS
30
COMPARING
THE
MOBILITY SECTOR
32
POLICY
INSTRUMENTS
AND
IMPLEMENTATION
33
SUMMARY
AND
FINAL
REMARKS
37
REFERENCES
38
3
DECARBONIZATION
IN
THE
ENERGY
SECTOR
41
MUHAMMAD
ASIF
3.1
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
DECARBONIZATION
41
DECARBONIZATION
PATHWAYS
42
RENEWABLE
ENERGY
43
SOLAR
ENERGY
43
WIND
POWER
44
HYDROPOWER
44
ELECTRIC
MOBILITY
44
HYDROGEN
AND
FUEL
CELLS
45
ENERGY
STORAGE
46
ENERGY
EFFICIENCY
46
DECARBONIZATION
OF
FOSSIL
FUEL
SECTOR
46
DECARBONIZATION:
DEVELOPMENTS
AND
TRENDS
47
REFERENCES
48
4
RENEWABLE
TECHNOLOGIES:
APPLICATIONS
AND
TRENDS
51
MUHAMMAD
ASIF
4.1
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.2
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.3.3
INTRODUCTION
51
OVERVIEW
OF
RENEWABLE
TECHNOLOGIES
52
SOLAR
ENERGY
52
SOLAR
PV
52
SOLAR
THERMAL
ENERGY
54
WIND
POWER
57
HYDROPOWER
58
DAM/STORAGE
59
RUN-OF-THE-RIVER
59
PUMPED
STORAGE
59
BIOMASS
60
GEOTHERMAL
ENERGY
61
WAVE
AND
TIDAL
POWER
62
RENEWABLES
ADVANCEMENTS
AND
TRENDS
63
MARKET
GROWTH
63
ECONOMICS
65
TECHNOLOGICAL
ADVANCEMENTS
65
CONTENTS
VII
4.3.4
POWER
DENSITY
67
4.3.5
ENERGY
STORAGE
67
4.4
CONCLUSIONS
69
REFERENCES
69
5
FUNDAMENTALS
AND
APPLICATIONS
OF
HYDROGEN
AND
FUEL
CELLS
73
BENGT
SUNDEN
5.1
INTRODUCTION
73
5.2
HYDROGEN
-
GENERAL
74
5.2.1
PRODUCTION
OF
HYDROGEN
74
5.2.2
STORAGE
OF
HYDROGEN
75
5.2.3
TRANSPORTATION
OF
HYDROGEN
76
5.2.4
CONCERNS
ABOUT
HYDROGEN
76
5.2.5
ADVANTAGES
OF
HYDROGEN
ENERGY
76
5.2.6
DISADVANTAGES
OF
HYDROGEN
ENERGY
76
5.3
BASIC
ELECTROCHEMISTRY
AND
THERMODYNAMICS
77
5.4
FUEL
CELLS
-
OVERVIEW
78
5.4.1
TYPES
OF
FUEL
CELLS
79
5.4.2
PROTON
EXCHANGE
MEMBRANE
FUEL
CELLS
(PEMFC)
OR
POLYMER
ELECTROLYTE
FUEL
CELLS
(PEFC)
83
5.4.2.1
PERFORMANCE
OF
A
PEMFC
83
5.4.3
SOLID
OXIDE
FUEL
CELLS
(SOFC)
83
5.4.4
COMPARISON
OF
PEMFCS
AND
SOFCS
84
5.4.5
OVERALL
DESCRIPTION
OF
BASIC
TRANSPORT
PROCESSES
AND
OPERATIONS
OF
A
FUEL
CELL
85
5.4.5.1
ELECTROCHEMICAL
KINETICS
85
5.4.5.2
HEAT
AND
MASS
TRANSFER
85
5.4.5.3
CHARGE
AND
WATER
TRANSPORT
86
5.4.5.4
HEAT
GENERATION
87
5.4.6
MODELING
APPROACHES
FOR
FUEL
CELLS
87
5.4.6.1
SOFTWARES
89
5.4.7
FUEL
CELL
SYSTEMS
AND
APPLICATIONS
90
5.4.7.1
PORTABLE
POWER
90
5.4.7.2
BACKUP
POWER
91
5.4.7.3
TRANSPORTATION
91
5.4.7.4
STATIONARY
POWER
92
5.4.7.5
MARITIME
APPLICATIONS
93
5.4.7.6
AEROSPACE
APPLICATIONS
94
5.4.7.7
AIRCRAFT
APPLICATIONS
95
5.4.8
BOTTLENECKS
FOR
FUEL
CELLS
95
5.5
CONCLUSIONS
97
ACKNOWLEDGMENTS
97
NOMENCLATURE
97
ABBREVIATIONS
98
REFERENCES
99
VIII
CONTENTS
6
DECARBONIZING
WITH
NUCLEAR
POWER,
CURRENT
BUILDS,
AND
FUTURE
TRENDS
103
HASLIZO
OMAR
F
GEORDIE
GRAETZ,
AND
MARK
HO
6.1
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.7
INTRODUCTION
103
THE
HISTORIC
COST
OF
NUCLEAR
POWER
104
THE
SMALL
MODULAR
REACTOR
(SMR):
COULD
SMALLER
BE
BETTER?
109
NEW
NUCLEAR
REACTOR
IN
TOWN
109
IS
IT
THE
SMALLER
THE
BETTER?
110
EVALUATING
THE
ECONOMIC
COMPETITIVENESS
OF
SMRS
113
SIZE
MATTERS
113
CONSTRUCTION
TIME
113
CO-SITING
ECONOMIES
114
LEARNING
RATES
115
THE
LEVELIZED
COST
OF
ELECTRICITY
(LCOE):
IS
IT
A
RELIABLE
MEASURE?
118
THE
OVERNIGHT
CAPITAL
COST
(OCC):
SMRS
VS.
A
LARGE
REACTOR
120
NUCLEAR
ENERGY:
LOOKING
BEYOND
ITS
PERCEIVED
REPUTATION
123
LOAD-FOLLOWING
AND
COGENERATION
123
INDUSTRIAL HEAT
(DISTRICT
AND
PROCESS)
125
HYDROGEN
PRODUCTION
127
SEAWATER
DESALINATION
130
WESTERN
NUCLEAR
INDUSTRY
TRENDS
131
THE
UNITED
STATES
131
THE
UNITED
KINGDOM
132
CANADA
135
CONCLUSIONS
137
REFERENCES
141
7
DECARBONIZATION
OF
THE
FOSSIL
FUEL
SECTOR
153
TIAN
GOH
AND
BENG
WAH
ANG
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.6
INTRODUCTION
153
TECHNOLOGIES
FOR
THE
DECARBONIZATION
OF
THE
FOSSIL
FUEL
SECTOR
154
HISTORICAL
DEVELOPMENTS
154
HYDROGEN
ECONOMY
155
CARBON
CAPTURE
AND
STORAGE
156
RECENT
ADVANCEMENTS
AND
POTENTIAL
157
CARBON
CAPTURE
AND
STORAGE
158
CARBON
CAPTURE
AND
UTILIZATION
158
FUTURE
EMISSION
SCENARIOS
AND
CHALLENGES
TO
DECARBONIZATION
160
APPLICATION
IN
FUTURE
EMISSION
SCENARIOS
160
CHALLENGES
TO
DECARBONIZATION
164
CONTROVERSIES
AND
DEBATES
167
OPPOSING
NARRATIVES
167
PUBLIC
PERCEPTIONS
169
CONCLUSIONS
171
REFERENCES
172
CONTENTS
IX
8
ELECTRIC
VEHICLE
ADOPTION
DYNAMICS
ON
THE
ROAD
TO
DEEP
DECARBONIZATION
177
EMIL
DIMANCHEV,
DAVOOD
QORBANI,
AND
MAGNUS
KORPDS
8.1
INTRODUCTION
177
8.2
CURRENT
STATE
OF
ELECTRIC
VEHICLES
178
8.2.1
ELECTRIC
VEHICLE
TECHNOLOGY
178
8.2.2
ELECTRIC
VEHICLE
ENVIRONMENTAL
ATTRIBUTES
179
8.2.3
COMPETING
LOW-CARBON
VEHICLE
TECHNOLOGIES
180
8.3
CONTRIBUTION
OF
ROAD
TRANSPORT
TO
DECARBONIZATION
POLICY
181
8.3.1
STATE
AND
TRENDS
OF
CO
2
EMISSIONS
FROM
TRANSPORTATION
AND
PASSENGER
VEHICLES
181
8.3.2
DECARBONIZATION
OF
TRANSPORT
182
8.3.3
DECARBONIZATION
PATHWAYS
FOR
PASSENGER
VEHICLES
AND
THE
ROLE
OF
ELECTRIC
VEHICLES
183
8.4
DYNAMICS
OF
VEHICLE
FLEET
TURNOVER
190
8.4.1
ILLUSTRATIVE
FLEET
TURNOVER
MODEL
190
8.4.2
IMPLICATIONS
OF
FLEET
TURNOVER
DYNAMICS
FOR
MEETING
DECARBONIZATION
TARGETS
191
8.5
ELECTRIC
VEHICLE
POLICY
194
8.5.1
CASE
STUDY
OF
ELECTRIC
VEHICLE
POLICY
IN
NORWAY
195
8.6
PROSPECTS
FOR
ELECTRIC
VEHICLE
TECHNOLOGY
AND
ECONOMICS
196
8.7
CONCLUSIONS
199
REFERENCES
200
9
INTEGRATED
ENERGY
SYSTEM: A
LOW-CARBON
FUTURE
ENABLER
207
PENGFEI
ZHAO,
CHENGHONG
GU,
ZHIDONG
CAO,
AND
SHUANGQI
LI
9.1
PARADIGM
SHIFT
IN
ENERGY
SYSTEMS
207
9.2
KEY
TECHNOLOGIES
IN
INTEGRATED
ENERGY
SYSTEMS
210
9.2.1
CONVERSION
TECHNOLOGIES
211
9.2.1.1
COMBINED
HEAT
AND
POWER
211
9.2.1.2
HEAT
PUMP
AND
GAS
FURNACE
211
9.2.1.3
POWER
TO
GAS
211
9.2.1.4
GAS
STORAGE
212
9.2.1.5
BATTERY
ENERGY
STORAGE
SYSTEMS
212
9.2.2
ENERGY
HUB
SYSTEMS
213
9.2.3
MODELING
OF
INTEGRATED
ENERGY
SYSTEMS
214
9.3
MANAGEMENT
OF
INTEGRATED
ENERGY
SYSTEMS
215
9.3.1
OPTIMIZATION
TECHNIQUES
FOR
INTEGRATED
ENERGY
SYSTEMS
215
9.3.1.1
STOCHASTIC
OPTIMIZATION
215
9.3.1.2
ROBUST
OPTIMIZATION
215
9.3.1.3
DISTRIBUTIONALLY
ROBUST
OPTIMIZATION
217
9.3.2
SUPPLY
QUALITY
ISSUES
217
9.3.2.1
VOLTAGE
ISSUES
217
9.3.2.2
GAS
QUALITY
ISSUES
218
X
CONTENTS
9.4
9.4.1
9.4.2
9.4.2.1
9.4.2.2
9.4.23
9.4.3
9.43.1
9.43.2
9.4.33
9.5
A
A.1
A.2
A3
VOLT-PRESSURE
OPTIMIZATION
FOR
INTEGRATED
ENERGY
SYSTEMS
219
RESEARCH
GAP
219
PROBLEM
FORMULATION
220
DAY-AHEAD
CONSTRAINTS
OF
VPO
220
REAL-TIME
CONSTRAINTS
OF
VPO
222
OBJECTIVE
FUNCTION
OF
TWO-STAGE
VPO
222
RESULTS
AND
DISCUSSIONS
223
STUDIES
ON
WO
223
STUDIES
ON
ECONOMIC
PERFORMANCE
227
STUDIES
ON
GAS
QUALITY
MANAGEMENT
228
CONCLUSIONS
229
APPENDIX:
NOMENCLATURE
230
INDICES
AND
SETS
230
PARAMETERS
230
VARIABLES
AND
FUNCTIONS
232
REFERENCES
233
PART
II
DECREASING
USE
239
10
DECREASING
THE
USE
OF
ENERGY
FOR
SUSTAINABLE
ENERGY
TRANSITION
241
MUHAMMAD
ASIF
10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
WHY
DECREASE
THE
USE
OF
ENERGY?
241
ENERGY
EFFICIENCY
APPROACHES
243
CHANGE
OF
ATTITUDE
243
PERFORMANCE
ENHANCEMENT
244
NEW
TECHNOLOGIES
244
SCOPE
OF
ENERGY
EFFICIENCY
244
REFERENCES
245
11
ENERGY
CONSERVATION
AND
MANAGEMENT
IN
BUILDINGS
247
WAHHAJ
AHMED
AND
MUHAMMAD
ASIF
11.1
11.2
11.3
11.3.1
11.3.2
11.4
11.4.1
11.4.1.1
11.4.1.2
11.4.1.3
11.5
11.6
ENERGY
AND
ENVIRONMENTAL
FOOTPRINT
OF
BUILDINGS
247
ENERGY-EFFICIENCY
POTENTIAL
IN
BUILDINGS
248
ENERGY-EFFICIENT
DESIGN
STRATEGIES
250
PASSIVE
AND
ACTIVE
DESIGN
STRATEGIES
251
ENERGY
MODELING
TO
DESIGN
ENERGY-EFFICIENT
STRATEGIES
251
BUILDING
ENERGY
RETROFIT
255
BUILDING
ENERGY-RETROFIT
CLASSIFICATIONS
256
PRE
AND
POST-RETROFIT
ASSESSMENT
STRATEGIES
256
NUMBER
AND
TYPE
OF
EEMS
257
MODELING
AND
DESIGN
APPROACH
258
SUSTAINABLE
BUILDING
STANDARDS
AND
CERTIFICATION
SYSTEMS
260
CONCLUSIONS
261
REFERENCES
261
CONTENTS
XI
12
METHODOLOGIES
FOR
THE
ANALYSIS
OF
ENERGY
CONSUMPTION
IN
THE
INDUSTRIAL
SECTOR
267
VINCENZO
BIANCO
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.3
12.4
12.4.1
12.4.2
12.5
12.6
INTRODUCTION
267
OVERVIEW
OF
BASIC
INDEXES
FOR
ENERGY
CONSUMPTION
ANALYSIS
269
COMPOUND
ANNUAL
GROWTH
RATE
(CAGR)
269
ENERGY
CONSUMPTION
ELASTICITY
(ECE)
270
ENERGY
INTENSITY
(EI)
270
LINEAR
CORRELATION
INDEX
(LCI)
271
WEATHER
ADJUSTING
COEFFICIENT
(WAC)
271
DECOMPOSITION
ANALYSIS
OF
ENERGY
CONSUMPTION
272
CASE
STUDY:
THE
ITALIAN
INDUSTRIAL
SECTOR
274
INDEX-BASED
ANALYSIS
274
DECOMPOSITION
OF
ENERGY
CONSUMPTION
276
RELATIONSHIP
BETWEEN
ENERGY
EFFICIENCY
AND
ENERGY
TRANSITION
283
CONCLUSIONS
284
REFERENCES
285
PART
III
DECENTRALIZATION
287
13
DECENTRALIZATION
IN
ENERGY
SECTOR
289
MUHAMMAD
ASIF
13.1
13.2
13.2.1
13.2.2
13.3
13.3.1
13.3.1.1
13.3.1.2
13.3.1.3
13.3.1.4
13.3.1.5
13.3.1.6
13.3.1.7
13.3.1.8
13.3.1.9
13.3.2
13.3.2.1
13.3.2.2
13.3.2.3
13.3.2.4
13.4
INTRODUCTION
289
OVERVIEW
OF
DECENTRALIZED
GENERATION
SYSTEMS
290
CLASSIFICATION
290
TECHNOLOGIES
292
DECENTRALIZED
AND
CENTRALIZED
GENERATION
-
A
COMPARISON
293
ADVANTAGES
OF
DECENTRALIZED
GENERATION
293
COST-EFFECTIVENESS
293
ENHANCED
ENERGY
ACCESS
293
ENVIRONMENT
FRIENDLINESS
294
SECURITY
294
RELIABILITY
294
PEAK
SHAVING
294
SUPPLY RESILIENCE
294
NEW
BUSINESS
STREAMS
294
OTHER
BENEFITS
295
DISADVANTAGES
OF
DECENTRALIZED
GENERATION
295
POWER
QUALITY
295
EFFECT
ON
GIRD
STABILITY
295
ENERGY
STORAGE
REQUIREMENT
295
INSTITUTIONAL
RESISTANCE
295
DEVELOPMENTS
AND
TRENDS
295
REFERENCES
296
XII
CONTENTS
14
DECENTRALIZING
THE
ELECTRICITY
INFRASTRUCTURE:
WHAT
IS
ECONOMICALLY
VIABLE?
299
MORITZ
VOGEL,
MARION
WINGENBACH,
AND
DIERK
BAUKNECHT
14.1
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.5
14.5.1
14.5.2
14.5.3
14.6
14.6.1
14.6.2
14.6.3
14.6.4
14.7
INTRODUCTION
299
DECENTRALIZATION
OF
ELECTRICITY
SYSTEMS
300
TECHNOLOGICAL
DIMENSIONS
OF
DECENTRALIZATION
301
GRID
LEVEL
OF
POWER
PLANTS
302
REGIONAL
DISTRIBUTION
OF
POWER
PLANTS
302
GRID
LEVEL
OF
FLEXIBILITY
OPTIONS
302
LEVEL
OF
OPTIMIZATION
303
DECENTRALIZATION:
COSTS
AND
BENEFITS
303
GRID
LEVEL
OF
POWER
PLANTS
304
REGIONAL
DISTRIBUTION OF
POWER
PLANTS
305
GRID
LEVEL
OF
FLEXIBILITY
OPTIONS
306
LEVEL
OF
OPTIMIZATION
307
GERMANY
'
S
DECENTRALIZATION
EXPERIENCE:
A
CASE
STUDY
310
SYSTEM
COST
310
GRID
EXPANSION
314
KEY
FINDINGS
316
HOW
FAR
SHOULD
DECENTRALIZATION
GO?
317
GRID
LEVEL
OF
POWER
PLANTS
317
REGIONAL
DISTRIBUTION
OF
POWER
PLANTS
317
GRID
LEVEL
OF
FLEXIBILITY
OPTIONS
319
LEVEL
OF
OPTIMIZATION
319
CONCLUSIONS
320
REFERENCES
320
15
GOVERNING
DECENTRALIZED
ELECTRICITY:
TAKING
A
PARTICIPATORY
TURN
325
MARIE
CLAIRE
BRISBOIS
15.1
15.2
INTRODUCTION
325
HOW
IS
DECENTRALIZATION
AFFECTING
TRADITIONAL
MODES
OF
ELECTRICITY
GOVERNANCE?
326
15.2.1
15.3
15.3.1
15.3.2
15.3.3
15.4
STICKING
POINTS
FOR
SHIFTING
TO
DECENTRALIZED
GOVERNANCE
327
WHAT
KINDS
OF
GOVERNANCE
DOES
DECENTRALIZATION
REQUIRE?
328
SECURITY
328
AFFORDABILITY
329
SUSTAINABILITY
331
WHAT
DO
WE
KNOW
ABOUT
DECENTRALIZED
GOVERNANCE
FROM
OTHER
SPHERES?
332
15.4.1
15.4.2
15.4.2.1
15.4.2.2
15.4.2.3
NESTED,
MULTILEVEL
GOVERNANCE
OF
COMMON
POOL
RESOURCES
333
KEY
COMPONENTS OF
COMMON
POOL
RESOURCE
GOVERNANCE
334
ROLES
AND
RESPONSIBILITIES
334
POLICY
COHERENCE
335
CAPACITY
DEVELOPMENT
336
CONTENTS
XIII
15.4.2.4
15.4.2.5
15.4.2.6
15.5
15.5.1
15.5.2
15.5.3
15.6
TRANSPARENT
AND
OPEN
DATA
336
APPROPRIATE
REGULATIONS
337
STAKEHOLDER
PARTICIPATION
338
MOVING
TOWARD
A
DECENTRALIZED
GOVERNANCE
SYSTEM
339
PHASE
ONE
339
PHASE
TWO
340
PHASE
THREE
341
CONCLUSIONS
341
REFERENCES
342
PART
IV
DIGITALIZATION
347
16
DIGITALIZATION
IN
ENERGY
SECTOR
349
MUHAMMAD
ASIF
16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.3
INTRODUCTION
349
OVERVIEW
OF
DIGITAL TECHNOLOGIES
350
ARTIFICIAL
INTELLIGENCE
AND
MACHINE
LEARNING
350
BLOCKCHAIN
351
ROBOTICS
AND
AUTOMATED
TECHNOLOGIES
351
INTERNET
OF
THINGS
351
BIG
DATA
AND
DATA
ANALYTICS
352
DIGITALIZATION:
PROSPECTS
AND
CHALLENGES
352
REFERENCES
354
17
SMART
GRIDS
AND
SMART
METERING
357
HAROON
FAROOQ,
WAQAS
ALI,
AND
INTISAR
A.
SAJJAD
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
INTRODUCTION
357
GRID
MODERNIZATION
AND
ITS
NEED
IN
THE
TWENTY-FIRST
CENTURY
358
SMART
GRID
360
SMART
GRID
VS.
TRADITIONAL
GRID
362
SMART
GRID
COMPOSITION
AND
ARCHITECTURE
362
SMART
GRID
TECHNOLOGIES
365
SMART
METERING
367
ROLE
OF
SMART
METERING
IN
SMART
GRID
369
KEY
CHALLENGES
AND
THE
FUTURE
OF
SMART
GRID
370
IMPLEMENTATION
BENEFITS
AND
POSITIVE
IMPACTS
372
WORLDWIDE
DEVELOPMENT
AND
DEPLOYMENT
373
CONCLUSIONS
375
REFERENCES
376
18
BLOCKCHAIN
IN
ENERGY
381
BERND
TEUFEL
AND
ANTON
SENTIC
18.1
TRANSFORMATION
OF
THE
ELECTRICITY
MARKET
AND
AN
EMERGING
TECHNOLOGY
381
XIV
CONTENTS
18.2
18.2.1
18.2.2
18.2.3
18.2.4
BLOCKCHAIN
IN
THE
ENERGY
SECTOR
382
DEFINING
BLOCKCHAIN
383
UTILIZING
BLOCKCHAIN
IN
ENERGY
SYSTEMS
385
CASE
EXAMPLES
FOR
BLOCKCHAIN
ENERGY
386
UTILIZATION
OF
BLOCKCHAIN
ENERGY:
INTRODUCING
AN
INNOVATION
PERSPECTIVE
387
18.3
18.3.1
18.3.2
BLOCKCHAIN
AS
A
(DISRUPTIVE)
INNOVATION
IN
ENERGY
TRANSITIONS
389
TRANSITION
STUDIES,
REGIMES,
AND
NICHE
INNOVATIONS
389
BLOCKCHAIN
TECHNOLOGIES
BETWEEN
NICHE
INNOVATION
AND
THE
SOCIO-TECHNICAL
SYSTEM
390
18.4
CONCLUSIONS
AND
VENUES
FOR
FURTHER
INQUIRY
392
ACKNOWLEDGMENT
394
REFERENCES
394
EPILOGUE
399
FEREIDOON
SIOSHANSI
INDEX
405 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Asif, Muhammad |
author2_role | edt |
author2_variant | m a ma |
author_GND | (DE-588)1287181651 |
author_facet | Asif, Muhammad |
building | Verbundindex |
bvnumber | BV048462268 |
classification_rvk | AR 26300 RB 10690 ZP 3700 |
ctrlnum | (OCoLC)1342619103 (DE-599)DNB1248828771 |
discipline | Allgemeines Energietechnik Geographie |
discipline_str_mv | Allgemeines Energietechnik Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048462268</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230427</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220908s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1248828771</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527348824</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-527-34882-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1342619103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1248828771</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 26300</subfield><subfield code="0">(DE-625)8599:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10690</subfield><subfield code="0">(DE-625)142220:12824</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3700</subfield><subfield code="0">(DE-625)157967:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The 4Ds of energy transition</subfield><subfield code="b">decarbonization, decentralization, decreasing use and digitalization</subfield><subfield code="c">edited by Muhammad Asif</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The 4 Ds of energy transition</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The four Ds of energy transition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 414 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (überwiegend farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energiewende</subfield><subfield code="0">(DE-588)1210494086</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Innovation</subfield><subfield code="0">(DE-588)4431027-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieeffizienz</subfield><subfield code="0">(DE-588)7660153-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energietechnik</subfield><subfield code="0">(DE-588)4014725-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energietechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Leistungselektronik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nachhaltige u. Grüne Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Power Electronics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Power Technology & Power Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sustainable Chemistry & Green Chemistry</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Energiewende</subfield><subfield code="0">(DE-588)1210494086</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Energieeffizienz</subfield><subfield code="0">(DE-588)7660153-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Energietechnik</subfield><subfield code="0">(DE-588)4014725-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Technische Innovation</subfield><subfield code="0">(DE-588)4431027-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asif, Muhammad</subfield><subfield code="0">(DE-588)1287181651</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-83144-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-83143-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-83142-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033840248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033840248</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048462268 |
illustrated | Illustrated |
index_date | 2024-07-03T20:34:00Z |
indexdate | 2024-11-14T11:03:18Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527348824 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033840248 |
oclc_num | 1342619103 |
open_access_boolean | |
owner | DE-29T DE-703 DE-20 DE-573 DE-11 |
owner_facet | DE-29T DE-703 DE-20 DE-573 DE-11 |
physical | xviii, 414 Seiten Illustrationen, Diagramme (überwiegend farbig) |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization edited by Muhammad Asif The 4 Ds of energy transition The four Ds of energy transition Weinheim Wiley-VCH [2022] xviii, 414 Seiten Illustrationen, Diagramme (überwiegend farbig) txt rdacontent n rdamedia nc rdacarrier Energiewende (DE-588)1210494086 gnd rswk-swf Technische Innovation (DE-588)4431027-4 gnd rswk-swf Energieeffizienz (DE-588)7660153-5 gnd rswk-swf Energietechnik (DE-588)4014725-3 gnd rswk-swf Nachhaltigkeit (DE-588)4326464-5 gnd rswk-swf Energie Energietechnik Energy Leistungselektronik Nachhaltige u. Grüne Chemie Power Electronics Power Technology & Power Engineering Sustainable Chemistry & Green Chemistry (DE-588)4143413-4 Aufsatzsammlung gnd-content Energiewende (DE-588)1210494086 s Nachhaltigkeit (DE-588)4326464-5 s Energieeffizienz (DE-588)7660153-5 s Energietechnik (DE-588)4014725-3 s Technische Innovation (DE-588)4431027-4 s DE-604 Asif, Muhammad (DE-588)1287181651 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-83144-9 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-83143-2 Erscheint auch als Online-Ausgabe 978-3-527-83142-5 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033840248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization Energiewende (DE-588)1210494086 gnd Technische Innovation (DE-588)4431027-4 gnd Energieeffizienz (DE-588)7660153-5 gnd Energietechnik (DE-588)4014725-3 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
subject_GND | (DE-588)1210494086 (DE-588)4431027-4 (DE-588)7660153-5 (DE-588)4014725-3 (DE-588)4326464-5 (DE-588)4143413-4 |
title | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization |
title_alt | The 4 Ds of energy transition The four Ds of energy transition |
title_auth | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization |
title_exact_search | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization |
title_exact_search_txtP | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization |
title_full | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization edited by Muhammad Asif |
title_fullStr | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization edited by Muhammad Asif |
title_full_unstemmed | The 4Ds of energy transition decarbonization, decentralization, decreasing use and digitalization edited by Muhammad Asif |
title_short | The 4Ds of energy transition |
title_sort | the 4ds of energy transition decarbonization decentralization decreasing use and digitalization |
title_sub | decarbonization, decentralization, decreasing use and digitalization |
topic | Energiewende (DE-588)1210494086 gnd Technische Innovation (DE-588)4431027-4 gnd Energieeffizienz (DE-588)7660153-5 gnd Energietechnik (DE-588)4014725-3 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
topic_facet | Energiewende Technische Innovation Energieeffizienz Energietechnik Nachhaltigkeit Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033840248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT asifmuhammad the4dsofenergytransitiondecarbonizationdecentralizationdecreasinguseanddigitalization AT wileyvch the4dsofenergytransitiondecarbonizationdecentralizationdecreasinguseanddigitalization AT asifmuhammad the4dsofenergytransition AT wileyvch the4dsofenergytransition AT asifmuhammad thefourdsofenergytransition AT wileyvch thefourdsofenergytransition |