Computer Vision Projects with PyTorch: Design and Develop Production-Grade Models
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress
2022
Berkeley, CA |
Ausgabe: | 1st ed. 2022 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHD01 FHI01 FHM01 FHN01 FHO01 FHR01 FKE01 FLA01 FWS01 FWS02 HTW01 UBR01 UBW01 UBY01 Volltext |
Beschreibung: | 1 Online-Ressource (XVI, 346 p. 154 illus) |
ISBN: | 9781484282731 |
DOI: | 10.1007/978-1-4842-8273-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048385134 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220801s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781484282731 |c Online |9 978-1-4842-8273-1 | ||
024 | 7 | |a 10.1007/978-1-4842-8273-1 |2 doi | |
035 | |a (ZDB-2-CWD)9781484282731 | ||
035 | |a (OCoLC)1339086291 | ||
035 | |a (DE-599)BVBBV048385134 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-1046 |a DE-1043 |a DE-Aug4 |a DE-898 |a DE-188 |a DE-523 |a DE-859 |a DE-863 |a DE-1050 |a DE-20 |a DE-1051 |a DE-862 |a DE-92 |a DE-355 |a DE-573 |a DE-M347 |a DE-706 | ||
082 | 0 | |a 006.31 |2 23 | |
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Kulkarni, Akshay |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computer Vision Projects with PyTorch |b Design and Develop Production-Grade Models |c by Akshay Kulkarni, Adarsha Shivananda, Nitin Ranjan Sharma |
250 | |a 1st ed. 2022 | ||
264 | 1 | |a Berkeley, CA |b Apress |c 2022 | |
264 | 1 | |a Berkeley, CA |b Apress | |
300 | |a 1 Online-Ressource (XVI, 346 p. 154 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Machine Learning | |
650 | 4 | |a Python | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Artificial intelligence | |
700 | 1 | |a Shivananda, Adarsha |4 aut | |
700 | 1 | |a Sharma, Nitin Ranjan |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-8272-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-8274-8 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4842-8273-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD | ||
940 | 1 | |q ZDB-2-CWD_2022 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033763929 | ||
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FAB01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FAW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FHA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FHD01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FHI01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FHM01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FHN01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FHO01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FHR01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FKE01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FLA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FWS01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l FWS02 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l HTW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l UBR01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l UBW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8273-1 |l UBY01 |p ZDB-2-CWD |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1000475 |
---|---|
_version_ | 1806174182237536256 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kulkarni, Akshay Shivananda, Adarsha Sharma, Nitin Ranjan |
author_facet | Kulkarni, Akshay Shivananda, Adarsha Sharma, Nitin Ranjan |
author_role | aut aut aut |
author_sort | Kulkarni, Akshay |
author_variant | a k ak a s as n r s nr nrs |
building | Verbundindex |
bvnumber | BV048385134 |
classification_tum | DAT 000 |
collection | ZDB-2-CWD |
ctrlnum | (ZDB-2-CWD)9781484282731 (OCoLC)1339086291 (DE-599)BVBBV048385134 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4842-8273-1 |
edition | 1st ed. 2022 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03392nmm a2200685zc 4500</leader><controlfield tag="001">BV048385134</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220801s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484282731</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-8273-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-8273-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484282731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339086291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048385134</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kulkarni, Akshay</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer Vision Projects with PyTorch</subfield><subfield code="b">Design and Develop Production-Grade Models</subfield><subfield code="c">by Akshay Kulkarni, Adarsha Shivananda, Nitin Ranjan Sharma</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2022</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 346 p. 154 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shivananda, Adarsha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharma, Nitin Ranjan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-8272-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-8274-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2022</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033763929</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FHO01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8273-1</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048385134 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:19:49Z |
indexdate | 2024-08-01T10:45:28Z |
institution | BVB |
isbn | 9781484282731 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033763929 |
oclc_num | 1339086291 |
open_access_boolean | |
owner | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-355 DE-BY-UBR DE-573 DE-M347 DE-706 |
owner_facet | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-355 DE-BY-UBR DE-573 DE-M347 DE-706 |
physical | 1 Online-Ressource (XVI, 346 p. 154 illus) |
psigel | ZDB-2-CWD ZDB-2-CWD_2022 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Apress |
record_format | marc |
spellingShingle | Kulkarni, Akshay Shivananda, Adarsha Sharma, Nitin Ranjan Computer Vision Projects with PyTorch Design and Develop Production-Grade Models Machine Learning Python Artificial Intelligence Machine learning Python (Computer program language) Artificial intelligence |
title | Computer Vision Projects with PyTorch Design and Develop Production-Grade Models |
title_auth | Computer Vision Projects with PyTorch Design and Develop Production-Grade Models |
title_exact_search | Computer Vision Projects with PyTorch Design and Develop Production-Grade Models |
title_exact_search_txtP | Computer Vision Projects with PyTorch Design and Develop Production-Grade Models |
title_full | Computer Vision Projects with PyTorch Design and Develop Production-Grade Models by Akshay Kulkarni, Adarsha Shivananda, Nitin Ranjan Sharma |
title_fullStr | Computer Vision Projects with PyTorch Design and Develop Production-Grade Models by Akshay Kulkarni, Adarsha Shivananda, Nitin Ranjan Sharma |
title_full_unstemmed | Computer Vision Projects with PyTorch Design and Develop Production-Grade Models by Akshay Kulkarni, Adarsha Shivananda, Nitin Ranjan Sharma |
title_short | Computer Vision Projects with PyTorch |
title_sort | computer vision projects with pytorch design and develop production grade models |
title_sub | Design and Develop Production-Grade Models |
topic | Machine Learning Python Artificial Intelligence Machine learning Python (Computer program language) Artificial intelligence |
topic_facet | Machine Learning Python Artificial Intelligence Machine learning Python (Computer program language) Artificial intelligence |
url | https://doi.org/10.1007/978-1-4842-8273-1 |
work_keys_str_mv | AT kulkarniakshay computervisionprojectswithpytorchdesignanddevelopproductiongrademodels AT shivanandaadarsha computervisionprojectswithpytorchdesignanddevelopproductiongrademodels AT sharmanitinranjan computervisionprojectswithpytorchdesignanddevelopproductiongrademodels |