Sae: A Stata Package For Unit Level Small Area Estimation
This paper presents a new family of Stata functions devoted to small area estimation. Small area methods attempt to solve low representativeness of surveys within areas, or the lack of data for specific areas/sub-populations. This is accomplished by incorporating information from outside sources. Su...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2018
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | This paper presents a new family of Stata functions devoted to small area estimation. Small area methods attempt to solve low representativeness of surveys within areas, or the lack of data for specific areas/sub-populations. This is accomplished by incorporating information from outside sources. Such target data sets are becoming increasingly available and can take the form of a traditional population census, but also large scale administrative records from tax administrations, or geospatial information produced using remote sensing. The strength of these target data sets is their granularity on the subpopulations of interest, however, in many cases they lack the ability to collect analytically relevant variables such as welfare or caloric intake. The family of functions introduced follow a modular design to have the flexibility with which these can be expanded in the future. This can be accomplished by the authors and/or other collaborators from the Stata community. Thus far, a major limitation of such analysis in Stata has been the large size of target data sets. The package introduces new mata functions and a plugin used to circumvent memory limitations that inevitably arise when working with big data. From an estimation perspective, the paper starts by implementing a methodology that has been widely used for the production of several poverty maps |
Beschreibung: | 1 Online-Ressource (30 Seiten) |
DOI: | 10.1596/1813-9450-8630 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048274139 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2018 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-8630 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011150610 | ||
035 | |a (OCoLC)1334057790 | ||
035 | |a (DE-599)GBVNLM011150610 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Nguyen, Minh Cong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sae |b A Stata Package For Unit Level Small Area Estimation |c Nguyen, Minh Cong |
264 | 1 | |a Washington, D.C |b The World Bank |c 2018 | |
300 | |a 1 Online-Ressource (30 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a This paper presents a new family of Stata functions devoted to small area estimation. Small area methods attempt to solve low representativeness of surveys within areas, or the lack of data for specific areas/sub-populations. This is accomplished by incorporating information from outside sources. Such target data sets are becoming increasingly available and can take the form of a traditional population census, but also large scale administrative records from tax administrations, or geospatial information produced using remote sensing. The strength of these target data sets is their granularity on the subpopulations of interest, however, in many cases they lack the ability to collect analytically relevant variables such as welfare or caloric intake. The family of functions introduced follow a modular design to have the flexibility with which these can be expanded in the future. This can be accomplished by the authors and/or other collaborators from the Stata community. Thus far, a major limitation of such analysis in Stata has been the large size of target data sets. The package introduces new mata functions and a plugin used to circumvent memory limitations that inevitably arise when working with big data. From an estimation perspective, the paper starts by implementing a methodology that has been widely used for the production of several poverty maps | ||
700 | 1 | |a Azevedo, Joao Pedro |4 oth | |
700 | 1 | |a Corral, Paul |4 oth | |
700 | 1 | |a Nguyen, Minh Cong |4 oth | |
700 | 1 | |a Zhao, Qinghua |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Nguyen, Minh Cong |t Sae: A Stata Package For Unit Level Small Area Estimation |d Washington, D.C : The World Bank, 2018 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-8630 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033654334 |
Datensatz im Suchindex
_version_ | 1812671818937401344 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Nguyen, Minh Cong |
author_facet | Nguyen, Minh Cong |
author_role | aut |
author_sort | Nguyen, Minh Cong |
author_variant | m c n mc mcn |
building | Verbundindex |
bvnumber | BV048274139 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011150610 (OCoLC)1334057790 (DE-599)GBVNLM011150610 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-8630 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048274139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-8630</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011150610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334057790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011150610</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, Minh Cong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sae</subfield><subfield code="b">A Stata Package For Unit Level Small Area Estimation</subfield><subfield code="c">Nguyen, Minh Cong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (30 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a new family of Stata functions devoted to small area estimation. Small area methods attempt to solve low representativeness of surveys within areas, or the lack of data for specific areas/sub-populations. This is accomplished by incorporating information from outside sources. Such target data sets are becoming increasingly available and can take the form of a traditional population census, but also large scale administrative records from tax administrations, or geospatial information produced using remote sensing. The strength of these target data sets is their granularity on the subpopulations of interest, however, in many cases they lack the ability to collect analytically relevant variables such as welfare or caloric intake. The family of functions introduced follow a modular design to have the flexibility with which these can be expanded in the future. This can be accomplished by the authors and/or other collaborators from the Stata community. Thus far, a major limitation of such analysis in Stata has been the large size of target data sets. The package introduces new mata functions and a plugin used to circumvent memory limitations that inevitably arise when working with big data. From an estimation perspective, the paper starts by implementing a methodology that has been widely used for the production of several poverty maps</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Azevedo, Joao Pedro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corral, Paul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Minh Cong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Qinghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Nguyen, Minh Cong</subfield><subfield code="t">Sae: A Stata Package For Unit Level Small Area Estimation</subfield><subfield code="d">Washington, D.C : The World Bank, 2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-8630</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033654334</subfield></datafield></record></collection> |
id | DE-604.BV048274139 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:10Z |
indexdate | 2024-10-12T04:02:37Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033654334 |
oclc_num | 1334057790 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (30 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Nguyen, Minh Cong Sae A Stata Package For Unit Level Small Area Estimation |
title | Sae A Stata Package For Unit Level Small Area Estimation |
title_auth | Sae A Stata Package For Unit Level Small Area Estimation |
title_exact_search | Sae A Stata Package For Unit Level Small Area Estimation |
title_exact_search_txtP | Sae A Stata Package For Unit Level Small Area Estimation |
title_full | Sae A Stata Package For Unit Level Small Area Estimation Nguyen, Minh Cong |
title_fullStr | Sae A Stata Package For Unit Level Small Area Estimation Nguyen, Minh Cong |
title_full_unstemmed | Sae A Stata Package For Unit Level Small Area Estimation Nguyen, Minh Cong |
title_short | Sae |
title_sort | sae a stata package for unit level small area estimation |
title_sub | A Stata Package For Unit Level Small Area Estimation |
url | https://doi.org/10.1596/1813-9450-8630 |
work_keys_str_mv | AT nguyenminhcong saeastatapackageforunitlevelsmallareaestimation AT azevedojoaopedro saeastatapackageforunitlevelsmallareaestimation AT corralpaul saeastatapackageforunitlevelsmallareaestimation AT zhaoqinghua saeastatapackageforunitlevelsmallareaestimation |