Distribution-Sensitive Multidimensional Poverty Measures:
This paper presents axiomatic arguments to make the case for distribution-sensitive multidimensional poverty measures. The commonly-used counting measures violate the strong transfer axiom which requires regressive transfers to be unambiguously poverty-increasing and they are also invariant to chang...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2018
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | This paper presents axiomatic arguments to make the case for distribution-sensitive multidimensional poverty measures. The commonly-used counting measures violate the strong transfer axiom which requires regressive transfers to be unambiguously poverty-increasing and they are also invariant to changes in the distribution of a given set of deprivations amongst the poor. The paper appeals to strong transfer as well as an additional cross-dimensional convexity property to offer axiomatic justification for distribution-sensitive multidimensional poverty measures. Given the nonlinear structure of these measures, it is al also shown how the problem of an exact dimensional decomposition can be solved using Shapley decomposition methods to assess dimensional contributions to poverty. An empirical illustration for India highlights distinctive features of the distribution-sensitive measures |
Beschreibung: | 1 Online-Ressource (55 Seiten) |
DOI: | 10.1596/1813-9450-8346 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048273855 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2018 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-8346 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011147776 | ||
035 | |a (OCoLC)1334024687 | ||
035 | |a (DE-599)GBVNLM011147776 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Datt, Gaurav |e Verfasser |4 aut | |
245 | 1 | 0 | |a Distribution-Sensitive Multidimensional Poverty Measures |c Datt, Gaurav |
264 | 1 | |a Washington, D.C |b The World Bank |c 2018 | |
300 | |a 1 Online-Ressource (55 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a This paper presents axiomatic arguments to make the case for distribution-sensitive multidimensional poverty measures. The commonly-used counting measures violate the strong transfer axiom which requires regressive transfers to be unambiguously poverty-increasing and they are also invariant to changes in the distribution of a given set of deprivations amongst the poor. The paper appeals to strong transfer as well as an additional cross-dimensional convexity property to offer axiomatic justification for distribution-sensitive multidimensional poverty measures. Given the nonlinear structure of these measures, it is al also shown how the problem of an exact dimensional decomposition can be solved using Shapley decomposition methods to assess dimensional contributions to poverty. An empirical illustration for India highlights distinctive features of the distribution-sensitive measures | ||
700 | 1 | |a Datt, Gaurav |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Datt, Gaurav |t Distribution-Sensitive Multidimensional Poverty Measures |d Washington, D.C : The World Bank, 2018 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-8346 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033654050 |
Datensatz im Suchindex
_version_ | 1812671818843029505 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Datt, Gaurav |
author_facet | Datt, Gaurav |
author_role | aut |
author_sort | Datt, Gaurav |
author_variant | g d gd |
building | Verbundindex |
bvnumber | BV048273855 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011147776 (OCoLC)1334024687 (DE-599)GBVNLM011147776 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-8346 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048273855</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-8346</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011147776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334024687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011147776</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Datt, Gaurav</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distribution-Sensitive Multidimensional Poverty Measures</subfield><subfield code="c">Datt, Gaurav</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (55 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents axiomatic arguments to make the case for distribution-sensitive multidimensional poverty measures. The commonly-used counting measures violate the strong transfer axiom which requires regressive transfers to be unambiguously poverty-increasing and they are also invariant to changes in the distribution of a given set of deprivations amongst the poor. The paper appeals to strong transfer as well as an additional cross-dimensional convexity property to offer axiomatic justification for distribution-sensitive multidimensional poverty measures. Given the nonlinear structure of these measures, it is al also shown how the problem of an exact dimensional decomposition can be solved using Shapley decomposition methods to assess dimensional contributions to poverty. An empirical illustration for India highlights distinctive features of the distribution-sensitive measures</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Datt, Gaurav</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Datt, Gaurav</subfield><subfield code="t">Distribution-Sensitive Multidimensional Poverty Measures</subfield><subfield code="d">Washington, D.C : The World Bank, 2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-8346</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033654050</subfield></datafield></record></collection> |
id | DE-604.BV048273855 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:09Z |
indexdate | 2024-10-12T04:02:37Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033654050 |
oclc_num | 1334024687 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (55 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Datt, Gaurav Distribution-Sensitive Multidimensional Poverty Measures |
title | Distribution-Sensitive Multidimensional Poverty Measures |
title_auth | Distribution-Sensitive Multidimensional Poverty Measures |
title_exact_search | Distribution-Sensitive Multidimensional Poverty Measures |
title_exact_search_txtP | Distribution-Sensitive Multidimensional Poverty Measures |
title_full | Distribution-Sensitive Multidimensional Poverty Measures Datt, Gaurav |
title_fullStr | Distribution-Sensitive Multidimensional Poverty Measures Datt, Gaurav |
title_full_unstemmed | Distribution-Sensitive Multidimensional Poverty Measures Datt, Gaurav |
title_short | Distribution-Sensitive Multidimensional Poverty Measures |
title_sort | distribution sensitive multidimensional poverty measures |
url | https://doi.org/10.1596/1813-9450-8346 |
work_keys_str_mv | AT dattgaurav distributionsensitivemultidimensionalpovertymeasures |