Mathematical pictures at a data science exhibition:
This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 TUM01 UBG01 UPA01 Volltext |
Zusammenfassung: | This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. |
Beschreibung: | 1 Online-Ressource (xx, 318 Seiten) |
ISBN: | 9781009003933 |
DOI: | 10.1017/9781009003933 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048240340 | ||
003 | DE-604 | ||
005 | 20230406 | ||
007 | cr|uuu---uuuuu | ||
008 | 220524s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009003933 |c Online |9 978-1-00-900393-3 | ||
024 | 7 | |a 10.1017/9781009003933 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009003933 | ||
035 | |a (OCoLC)1322806073 | ||
035 | |a (DE-599)BVBBV048240340 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-739 |a DE-473 |a DE-91 | ||
084 | |a SK 990 |0 (DE-625)143278: |2 rvk | ||
084 | |a DAT 620 |2 stub | ||
100 | 1 | |a Foucart, Simon |d 1977- |e Verfasser |0 (DE-588)1041275412 |4 aut | |
245 | 1 | 0 | |a Mathematical pictures at a data science exhibition |c Simon Foucart |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xx, 318 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. | ||
650 | 4 | |a Big data / Mathematics | |
650 | 4 | |a Information science / Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 0 | 1 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-31-651888-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009003933 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033620845 | ||
966 | e | |u https://doi.org/10.1017/9781009003933 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009003933 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009003933 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009003933 |l TUM01 |p ZDB-20-CBO |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009003933 |l TUM01 |p ZDB-20-CBO |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009003933 |l UBG01 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009003933 |l UPA01 |p ZDB-20-CBO |q UPA_PDA_CBO_Kauf2022 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184029518364672 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Foucart, Simon 1977- |
author_GND | (DE-588)1041275412 |
author_facet | Foucart, Simon 1977- |
author_role | aut |
author_sort | Foucart, Simon 1977- |
author_variant | s f sf |
building | Verbundindex |
bvnumber | BV048240340 |
classification_rvk | SK 990 |
classification_tum | DAT 620 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009003933 (OCoLC)1322806073 (DE-599)BVBBV048240340 |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1017/9781009003933 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03406nmm a2200529zc 4500</leader><controlfield tag="001">BV048240340</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230406 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220524s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009003933</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-900393-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009003933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009003933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1322806073</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048240340</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 990</subfield><subfield code="0">(DE-625)143278:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 620</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Foucart, Simon</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1041275412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical pictures at a data science exhibition</subfield><subfield code="c">Simon Foucart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 318 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-31-651888-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033620845</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009003933</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048240340 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:54:00Z |
indexdate | 2024-07-10T09:32:50Z |
institution | BVB |
isbn | 9781009003933 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033620845 |
oclc_num | 1322806073 |
open_access_boolean | |
owner | DE-12 DE-739 DE-473 DE-BY-UBG DE-91 DE-BY-TUM |
owner_facet | DE-12 DE-739 DE-473 DE-BY-UBG DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xx, 318 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf ZDB-20-CBO TUM_Paketkauf_2022 ZDB-20-CBO UPA_PDA_CBO_Kauf2022 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Foucart, Simon 1977- Verfasser (DE-588)1041275412 aut Mathematical pictures at a data science exhibition Simon Foucart Cambridge Cambridge University Press 2022 1 Online-Ressource (xx, 318 Seiten) txt rdacontent c rdamedia cr rdacarrier This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. Big data / Mathematics Information science / Mathematics Computer science / Mathematics Data Science (DE-588)1140936166 gnd rswk-swf Angewandte Mathematik (DE-588)4142443-8 gnd rswk-swf Angewandte Mathematik (DE-588)4142443-8 s Data Science (DE-588)1140936166 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-31-651888-5 https://doi.org/10.1017/9781009003933 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Foucart, Simon 1977- Mathematical pictures at a data science exhibition Big data / Mathematics Information science / Mathematics Computer science / Mathematics Data Science (DE-588)1140936166 gnd Angewandte Mathematik (DE-588)4142443-8 gnd |
subject_GND | (DE-588)1140936166 (DE-588)4142443-8 |
title | Mathematical pictures at a data science exhibition |
title_auth | Mathematical pictures at a data science exhibition |
title_exact_search | Mathematical pictures at a data science exhibition |
title_exact_search_txtP | Mathematical pictures at a data science exhibition |
title_full | Mathematical pictures at a data science exhibition Simon Foucart |
title_fullStr | Mathematical pictures at a data science exhibition Simon Foucart |
title_full_unstemmed | Mathematical pictures at a data science exhibition Simon Foucart |
title_short | Mathematical pictures at a data science exhibition |
title_sort | mathematical pictures at a data science exhibition |
topic | Big data / Mathematics Information science / Mathematics Computer science / Mathematics Data Science (DE-588)1140936166 gnd Angewandte Mathematik (DE-588)4142443-8 gnd |
topic_facet | Big data / Mathematics Information science / Mathematics Computer science / Mathematics Data Science Angewandte Mathematik |
url | https://doi.org/10.1017/9781009003933 |
work_keys_str_mv | AT foucartsimon mathematicalpicturesatadatascienceexhibition |