Microstrip antenna design for wireless applications:
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2022
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xviii, 333 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000417968 9781003093558 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048220995 | ||
003 | DE-604 | ||
005 | 20240216 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781000417968 |9 978-1-00-041796-8 | ||
020 | |a 9781003093558 |9 978-1-003-09355-8 | ||
035 | |a (ZDB-30-PQE)EBC6792178 | ||
035 | |a (ZDB-30-PAD)EBC6792178 | ||
035 | |a (ZDB-89-EBL)EBL6792178 | ||
035 | |a (OCoLC)1283844402 | ||
035 | |a (DE-599)BVBBV048220995 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a ZN 6440 |0 (DE-625)157563: |2 rvk | ||
084 | |a ELT 710 |2 stub | ||
084 | |a ELT 720 |2 stub | ||
245 | 1 | 0 | |a Microstrip antenna design for wireless applications |c edited by Praveen Kumar Malik, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xviii, 333 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Dedication -- Table of Contents -- Preface -- Organization of the Book -- Part I: Overview and Introduction -- Part II: Performance Analysis of Microstrip Antennas -- Part III: Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- Part IV: Fractal and Defected Ground Structure Microstrip Antennas -- Part V: Microstrip Antennas in Vehicular Communication -- Part VI: Importance and Use of Microstrip Antennas in IoT -- Part VII: Ultra-Wideband Antenna Design for Wearable Applications -- Part VIII: Microstrip Antenna Design for Miscellaneous Applications -- Editors -- Associate Editors -- Part I Overview and Introduction -- 1 Microstrip Patch Antenna Techniques for Wireless Applications -- 1.1 Introduction of Antennas -- 1.2 Rectangular Microstrip Patch Antennas -- 1.3 Fringing Effect in Microstrip Antennas -- 1.4 Microstrip Antenna Feeding Techniques -- 1.5 Comparison of Microstrip Antennas With Conventional Antennas -- 1.6 Advantages and Disadvantages of Microstrip Patch Antennas -- 1.7 Application of Microstrip Antennas -- 1.8 Conclusion -- References -- 2 A Review: Microstrip Patch Antennas for Ultra-Wideband -- 2.1 Introduction -- 2.2 Band-Notch Characteristics -- 2.3 10.6 GHz Bands -- 2.4 Under FCC Standard Band Greater Than 500 MHz -- 2.5 Conclusion -- References -- Part II Performance Analysis of Microstrip Antennas -- 3 Design and Performance Analysis of Microstrip Antennas Using Different Ground Plane Techniques for Wireless Applications -- 3.1 Introduction -- 3.2 Parameters of Microstrip Antennas -- 3.2.1 Gain -- 3.2.2 VSWR -- 3.2.3 Bandwidth -- 3.2.4 Return Loss -- 3.2.5 Shapes -- 3.3 Design Considerations -- 3.4 Fringing Effect -- 3.5 Principles -- 3.5.1 Properties -- 3.5.2 Feeding Methods -- 3.5.3 Contacting Type -- 3.5.4 Line Feed Microstrip -- 3.5.5 Probe Feed Microstrip | |
505 | 8 | |a 3.5.6 Non-Contacting Type -- 3.5.7 Proximity Coupled Feed -- 3.5.8 Aperture Coupled Feed -- 3.6 Performance Analysis -- 3.7 Simulation and Results -- 3.8 Applications of Microstrip Patch Antennas -- 3.9 Multiple-Input Multiple-Output -- 3.10 Fractal and Defected Ground Structure Microstrip Antennas -- 3.11 Microstrip Antennas for Vehicular Communication -- 3.12 Importance and Use of Microstrip Antennas in IoT Applications -- 3.13 Ultra-Wideband Antenna Design for Wearable Applications -- References -- 4 Design and Simulation of High Gain Microstrip Patch Antennas Using Fabricated Perovskite Manganite Added Polymer ... -- 4.1 Introduction to MPA -- 4.2 Miniaturization of MPA -- 4.2.1 Dielectric Constant for Miniaturization of MPA -- 4.2.2 PerPolyN for MPA Design -- 4.3 Introduction to Perovskite - a Dielectric Material -- 4.4 PerPolyN as A Dielectric Material of MPA -- 4.5 Global Impact of MPA -- 4.6 Methodology of Perovskite Synthesis -- 4.7 Results and Conclusion -- 4.7.1 Antenna Design Parameters -- 4.7.2 Validation of Antenna Parameters -- References -- 5 Compact Microstrip Patch Antenna Design With Three I-, Two L-, One E- and One F-Shaped Patch for Wireless Applications -- 5.1 Introduction -- 5.2 Importance of a Good Antenna Design -- 5.3 Review of the Existing Techniques -- 5.4 Antenna Design Considerations of Proposed Work -- 5.4.1 Antenna Structure -- 5.4.2 Antenna Design in IE3D -- 5.5 Results and Simulation -- 5.5.1 Voltage Standing Wave Ratio -- 5.5.2 S-Parameter/Return Loss -- 5.5.3 Gain -- 5.5.4 Directivity -- 5.5.5 Radiation Efficiency -- 5.5.6 Antenna Efficiency -- 5.5.7 Radiation Pattern -- 5.6 Conclusion -- References -- 6 Design of Elliptically Etched Circular and Elliptical Printed Antennas for Dual-Band 5G Mobile Applications -- 6.1 Introduction | |
505 | 8 | |a 6.2 Design Models of the Elliptically Etched Circular and Elliptical Printed Antennas -- 6.3 Results and Discussion of the Presented Antennas -- 6.4 Conclusions -- References -- 7 Design and Analyses of Dual-Band Microstrip Patch Antennas for Wireless Communications -- 7.1 Introduction -- 7.2 Design of a Dual-Band Patch Antenna With Double Slots (DBDS) -- 7.3 Radiation Performance Analysis -- 7.4 Directivity and Gain Analysis -- 7.5 Surface Current Analysis of Antenna -- 7.6 Design of a Dual-Band Patch Antenna With Square Ring (DBSR) -- 7.7 Radiation Performance Analysis -- 7.7.1 Directivity and Gain Analysis -- 7.7.2 Surface Current Analysis of Antenna -- 7.8 Design of a Dual-Band Antenna With Bend Slots (DBBS) -- 7.9 Radiation Performance Analysis -- 7.9.1 Directivity and Gain Analysis -- 7.9.2 Surface Current Analysis of Antenna -- 7.10 Antenna Radiation Performance Comparison -- 7.11 Conclusion -- References -- Part III Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- 8 Multiple-Input Multiple-Output Antenna Design and Applications -- 8.1 Introduction -- 8.2 MIMO Technology -- 8.3 Implementation -- 8.3.1 Need of MIMO -- 8.3.2 The Need of Multiple Antennas -- 8.4 Diversity in MIMO -- 8.5 Design Challenges -- 8.6 Different Types of Antennas -- 8.6.1 Dipole and Monopole -- 8.6.2 Loop and Slot -- 8.6.3 Planar Antennas -- 8.6.4 Microstrip Antennas -- 8.6.5 Bow-Tie Antenna -- 8.6.6 Log Periodic Antenna -- 8.6.7 Leak Wave Antenna -- 8.6.8 Substrate Integrated Waveguide -- 8.7 Microstrip Antenna Design -- 8.7.1 The Transmission Line Technique -- 8.7.2 Cavity Mode -- 8.7.3 Antenna Shape -- 8.7.4 Single Component Antenna Without Spaces -- 8.7.5 H-Shaped Single Component -- 8.8 Diversity Technology in Mobile Communications -- 8.9 Antenna Arrays -- 8.9.1 Two-Component Cluster | |
505 | 8 | |a 8.9.2 Four-Component Antenna Cluster With Fixed Bar Controlling -- 8.9.3 N-Component Uniform Straight Exhibit -- 8.9.4 Structuring -- 8.9.5 Integrated Antenna -- 8.9.6 Phase Shifters -- 8.9.7 Fractal Antenna -- 8.10 Design of Handsets -- 8.11 Plan of Base Stations -- 8.12 MIMO Cellular Systems -- 8.13 Wideband 4G Communication -- 8.13.1 Multiband 5G Antenna Structure -- 8.13.2 MIMO in Cancer Recognition -- 8.13.3 Bluetooth MIMO -- 8.13.4 Antenna PDA -- 8.13.5 Designing Laptops -- 8.13.6 EBG -- 8.13.7 Photonic Bandgap -- 8.13.8 UWB MIMO Antenna -- 8.14 Conclusion -- References -- 9 A Survey of Fifth-Generation Cellular Communications Using MIMO for IoT Applications -- 9.1 Introduction -- 9.2 Key Capabilities of 5G Well-Defined By ITU-R -- 9.3 Features and Types of MIMOs -- 9.4 Multiple Access Techniques Used in 4G and 5G -- 9.5 Challenges and Solutions of 5G and MIMO -- 9.6 Development Scenario Towards 5G - IoT and MIMO -- 9.7 Conclusion -- Acronyms -- 10 Design Considerations in MIMO Antennas for Next-Generation 5G Wireless Communications -- 10.1 Introduction -- 10.2 Isolation Enhancement Techniques -- 10.2.1 Decoupling Network Technique -- 10.2.2 Parasitic Element Technique -- 10.2.3 Neutralization Line Technique -- 10.2.4 Isolation Through Metamaterial Techniques -- 10.3 Conclusion -- References -- 11 Design and Enhancement of MIMO Antennas for Smart 5G Devices -- 11.1 Introduction -- 11.1.1 Typical Applications -- 11.2 Inset Feeding -- 11.3 Design Calculations -- 11.4 Design and Simulation of MIMO Antennas -- 11.4.1 Design of MIMO Antenna Structures -- 11.4.2 Simulation Results -- 11.5 Conclusion -- References -- Part IV Fractal and Defected Ground Structure Microstrip Antennas -- 12 Compact Rhombus Rectangular Microstrip Fractal Antennas With Vertically Periodic Defected Ground Structure for Wireless ... -- 12.1 Introduction | |
505 | 8 | |a 12.2 Antenna Design and Configuration -- 12.2.1 Directivity -- 12.2.2 Gain -- 12.2.3 Bandwidth -- 12.2.4 Return Loss -- 12.2.5 Cross-Polarization -- 12.2.6 Antenna With VPDGS -- 12.2.7 Antenna With Fractal Geometry -- 12.3 Simulation and Experimental Results -- 12.4 Conclusion -- References -- 13 Design and Analysis of Heptagon-Shaped Multiband Antennas With Multiple Notching for Wireless Applications -- 13.1 Introduction -- 13.2 Proposed Antenna Design With Simulation Results -- 13.2.1 Design 1 -- 13.2.2 Design 2 -- 13.2.3 Design 3 -- 13.3 Conclusion -- References -- Part V Microstrip Antennas in Vehicular Communication -- 14 Multifunctional Integrated Hybrid Rectangular Dielectric Resonator Antennas for High-Speed Communications -- 14.1 Introduction -- 14.2 Principle of Operation -- 14.3 Bandwidth Improvement Techniques -- 14.4 Structure of the Proposed Antenna -- 14.5 Results and Discussions -- 14.6 Conclusions -- References -- Part VI Importance and Use of Microstrip Antennas in IoT -- 15 Importance and Use of Microstrip Antennas in IoT: Opportunities and Challenges -- 15.1 Introduction -- 15.2 Importance and Use of Microstrip Antennas in IoT -- 15.2.1 Importance of Microstrip Antennas in IoT -- 15.2.2 Uses of Microstrip Antenna in IoT -- 15.2.3 Satellite Communication -- 15.2.4 Smart Home Applications -- 15.2.5 Real-Time Weather Monitoring Systems -- 15.2.6 Medical Applications -- 15.3 Multiband Microstrip Patch Antennas in IoT -- 15.4 Conclusion -- References -- 16 Importance and Use of Microstrip Antennas in IoT -- 16.1 Introduction to Microstrip Patch Antennas -- 16.2 Introduction to IoT -- 16.2.1 Importance of Antenna Design in a Wireless Or IoT Product -- 16.2.2 Fields Where the Term IoT Is Used -- 16.3 Microstrip Patch Antennas and IoT -- 16.3.1 Microstrip Patch Antenna Design for IoT Applications | |
505 | 8 | |a 16.3.2 Design Challenges of Antennas for IoT Applications | |
650 | 0 | 7 | |a Streifenleiterantenne |0 (DE-588)4183635-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Streifenleiterantenne |0 (DE-588)4183635-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Malik, Praveen Kumar |d 1975- |0 (DE-588)1227757247 |4 edt | |
700 | 1 | |a Sanjeevikumar, Padmanaban |d 1978- |0 (DE-588)1220850691 |4 edt | |
700 | 1 | |a Holm-Nielsen, Jens Bo |0 (DE-588)1157033725 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Malik, Praveen Kumar |t Microstrip Antenna Design for Wireless Applications |d Milton : Taylor & Francis Group,c2021 |n Druck-Ausgabe, Hardcover |z 978-0-367-55438-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-04788-1 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033601734 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6792178 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002033090560 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Malik, Praveen Kumar 1975- Sanjeevikumar, Padmanaban 1978- Holm-Nielsen, Jens Bo |
author2_role | edt edt edt |
author2_variant | p k m pk pkm p s ps j b h n jbh jbhn |
author_GND | (DE-588)1227757247 (DE-588)1220850691 (DE-588)1157033725 |
author_facet | Malik, Praveen Kumar 1975- Sanjeevikumar, Padmanaban 1978- Holm-Nielsen, Jens Bo |
building | Verbundindex |
bvnumber | BV048220995 |
classification_rvk | ZN 6440 |
classification_tum | ELT 710 ELT 720 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Dedication -- Table of Contents -- Preface -- Organization of the Book -- Part I: Overview and Introduction -- Part II: Performance Analysis of Microstrip Antennas -- Part III: Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- Part IV: Fractal and Defected Ground Structure Microstrip Antennas -- Part V: Microstrip Antennas in Vehicular Communication -- Part VI: Importance and Use of Microstrip Antennas in IoT -- Part VII: Ultra-Wideband Antenna Design for Wearable Applications -- Part VIII: Microstrip Antenna Design for Miscellaneous Applications -- Editors -- Associate Editors -- Part I Overview and Introduction -- 1 Microstrip Patch Antenna Techniques for Wireless Applications -- 1.1 Introduction of Antennas -- 1.2 Rectangular Microstrip Patch Antennas -- 1.3 Fringing Effect in Microstrip Antennas -- 1.4 Microstrip Antenna Feeding Techniques -- 1.5 Comparison of Microstrip Antennas With Conventional Antennas -- 1.6 Advantages and Disadvantages of Microstrip Patch Antennas -- 1.7 Application of Microstrip Antennas -- 1.8 Conclusion -- References -- 2 A Review: Microstrip Patch Antennas for Ultra-Wideband -- 2.1 Introduction -- 2.2 Band-Notch Characteristics -- 2.3 10.6 GHz Bands -- 2.4 Under FCC Standard Band Greater Than 500 MHz -- 2.5 Conclusion -- References -- Part II Performance Analysis of Microstrip Antennas -- 3 Design and Performance Analysis of Microstrip Antennas Using Different Ground Plane Techniques for Wireless Applications -- 3.1 Introduction -- 3.2 Parameters of Microstrip Antennas -- 3.2.1 Gain -- 3.2.2 VSWR -- 3.2.3 Bandwidth -- 3.2.4 Return Loss -- 3.2.5 Shapes -- 3.3 Design Considerations -- 3.4 Fringing Effect -- 3.5 Principles -- 3.5.1 Properties -- 3.5.2 Feeding Methods -- 3.5.3 Contacting Type -- 3.5.4 Line Feed Microstrip -- 3.5.5 Probe Feed Microstrip 3.5.6 Non-Contacting Type -- 3.5.7 Proximity Coupled Feed -- 3.5.8 Aperture Coupled Feed -- 3.6 Performance Analysis -- 3.7 Simulation and Results -- 3.8 Applications of Microstrip Patch Antennas -- 3.9 Multiple-Input Multiple-Output -- 3.10 Fractal and Defected Ground Structure Microstrip Antennas -- 3.11 Microstrip Antennas for Vehicular Communication -- 3.12 Importance and Use of Microstrip Antennas in IoT Applications -- 3.13 Ultra-Wideband Antenna Design for Wearable Applications -- References -- 4 Design and Simulation of High Gain Microstrip Patch Antennas Using Fabricated Perovskite Manganite Added Polymer ... -- 4.1 Introduction to MPA -- 4.2 Miniaturization of MPA -- 4.2.1 Dielectric Constant for Miniaturization of MPA -- 4.2.2 PerPolyN for MPA Design -- 4.3 Introduction to Perovskite - a Dielectric Material -- 4.4 PerPolyN as A Dielectric Material of MPA -- 4.5 Global Impact of MPA -- 4.6 Methodology of Perovskite Synthesis -- 4.7 Results and Conclusion -- 4.7.1 Antenna Design Parameters -- 4.7.2 Validation of Antenna Parameters -- References -- 5 Compact Microstrip Patch Antenna Design With Three I-, Two L-, One E- and One F-Shaped Patch for Wireless Applications -- 5.1 Introduction -- 5.2 Importance of a Good Antenna Design -- 5.3 Review of the Existing Techniques -- 5.4 Antenna Design Considerations of Proposed Work -- 5.4.1 Antenna Structure -- 5.4.2 Antenna Design in IE3D -- 5.5 Results and Simulation -- 5.5.1 Voltage Standing Wave Ratio -- 5.5.2 S-Parameter/Return Loss -- 5.5.3 Gain -- 5.5.4 Directivity -- 5.5.5 Radiation Efficiency -- 5.5.6 Antenna Efficiency -- 5.5.7 Radiation Pattern -- 5.6 Conclusion -- References -- 6 Design of Elliptically Etched Circular and Elliptical Printed Antennas for Dual-Band 5G Mobile Applications -- 6.1 Introduction 6.2 Design Models of the Elliptically Etched Circular and Elliptical Printed Antennas -- 6.3 Results and Discussion of the Presented Antennas -- 6.4 Conclusions -- References -- 7 Design and Analyses of Dual-Band Microstrip Patch Antennas for Wireless Communications -- 7.1 Introduction -- 7.2 Design of a Dual-Band Patch Antenna With Double Slots (DBDS) -- 7.3 Radiation Performance Analysis -- 7.4 Directivity and Gain Analysis -- 7.5 Surface Current Analysis of Antenna -- 7.6 Design of a Dual-Band Patch Antenna With Square Ring (DBSR) -- 7.7 Radiation Performance Analysis -- 7.7.1 Directivity and Gain Analysis -- 7.7.2 Surface Current Analysis of Antenna -- 7.8 Design of a Dual-Band Antenna With Bend Slots (DBBS) -- 7.9 Radiation Performance Analysis -- 7.9.1 Directivity and Gain Analysis -- 7.9.2 Surface Current Analysis of Antenna -- 7.10 Antenna Radiation Performance Comparison -- 7.11 Conclusion -- References -- Part III Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- 8 Multiple-Input Multiple-Output Antenna Design and Applications -- 8.1 Introduction -- 8.2 MIMO Technology -- 8.3 Implementation -- 8.3.1 Need of MIMO -- 8.3.2 The Need of Multiple Antennas -- 8.4 Diversity in MIMO -- 8.5 Design Challenges -- 8.6 Different Types of Antennas -- 8.6.1 Dipole and Monopole -- 8.6.2 Loop and Slot -- 8.6.3 Planar Antennas -- 8.6.4 Microstrip Antennas -- 8.6.5 Bow-Tie Antenna -- 8.6.6 Log Periodic Antenna -- 8.6.7 Leak Wave Antenna -- 8.6.8 Substrate Integrated Waveguide -- 8.7 Microstrip Antenna Design -- 8.7.1 The Transmission Line Technique -- 8.7.2 Cavity Mode -- 8.7.3 Antenna Shape -- 8.7.4 Single Component Antenna Without Spaces -- 8.7.5 H-Shaped Single Component -- 8.8 Diversity Technology in Mobile Communications -- 8.9 Antenna Arrays -- 8.9.1 Two-Component Cluster 8.9.2 Four-Component Antenna Cluster With Fixed Bar Controlling -- 8.9.3 N-Component Uniform Straight Exhibit -- 8.9.4 Structuring -- 8.9.5 Integrated Antenna -- 8.9.6 Phase Shifters -- 8.9.7 Fractal Antenna -- 8.10 Design of Handsets -- 8.11 Plan of Base Stations -- 8.12 MIMO Cellular Systems -- 8.13 Wideband 4G Communication -- 8.13.1 Multiband 5G Antenna Structure -- 8.13.2 MIMO in Cancer Recognition -- 8.13.3 Bluetooth MIMO -- 8.13.4 Antenna PDA -- 8.13.5 Designing Laptops -- 8.13.6 EBG -- 8.13.7 Photonic Bandgap -- 8.13.8 UWB MIMO Antenna -- 8.14 Conclusion -- References -- 9 A Survey of Fifth-Generation Cellular Communications Using MIMO for IoT Applications -- 9.1 Introduction -- 9.2 Key Capabilities of 5G Well-Defined By ITU-R -- 9.3 Features and Types of MIMOs -- 9.4 Multiple Access Techniques Used in 4G and 5G -- 9.5 Challenges and Solutions of 5G and MIMO -- 9.6 Development Scenario Towards 5G - IoT and MIMO -- 9.7 Conclusion -- Acronyms -- 10 Design Considerations in MIMO Antennas for Next-Generation 5G Wireless Communications -- 10.1 Introduction -- 10.2 Isolation Enhancement Techniques -- 10.2.1 Decoupling Network Technique -- 10.2.2 Parasitic Element Technique -- 10.2.3 Neutralization Line Technique -- 10.2.4 Isolation Through Metamaterial Techniques -- 10.3 Conclusion -- References -- 11 Design and Enhancement of MIMO Antennas for Smart 5G Devices -- 11.1 Introduction -- 11.1.1 Typical Applications -- 11.2 Inset Feeding -- 11.3 Design Calculations -- 11.4 Design and Simulation of MIMO Antennas -- 11.4.1 Design of MIMO Antenna Structures -- 11.4.2 Simulation Results -- 11.5 Conclusion -- References -- Part IV Fractal and Defected Ground Structure Microstrip Antennas -- 12 Compact Rhombus Rectangular Microstrip Fractal Antennas With Vertically Periodic Defected Ground Structure for Wireless ... -- 12.1 Introduction 12.2 Antenna Design and Configuration -- 12.2.1 Directivity -- 12.2.2 Gain -- 12.2.3 Bandwidth -- 12.2.4 Return Loss -- 12.2.5 Cross-Polarization -- 12.2.6 Antenna With VPDGS -- 12.2.7 Antenna With Fractal Geometry -- 12.3 Simulation and Experimental Results -- 12.4 Conclusion -- References -- 13 Design and Analysis of Heptagon-Shaped Multiband Antennas With Multiple Notching for Wireless Applications -- 13.1 Introduction -- 13.2 Proposed Antenna Design With Simulation Results -- 13.2.1 Design 1 -- 13.2.2 Design 2 -- 13.2.3 Design 3 -- 13.3 Conclusion -- References -- Part V Microstrip Antennas in Vehicular Communication -- 14 Multifunctional Integrated Hybrid Rectangular Dielectric Resonator Antennas for High-Speed Communications -- 14.1 Introduction -- 14.2 Principle of Operation -- 14.3 Bandwidth Improvement Techniques -- 14.4 Structure of the Proposed Antenna -- 14.5 Results and Discussions -- 14.6 Conclusions -- References -- Part VI Importance and Use of Microstrip Antennas in IoT -- 15 Importance and Use of Microstrip Antennas in IoT: Opportunities and Challenges -- 15.1 Introduction -- 15.2 Importance and Use of Microstrip Antennas in IoT -- 15.2.1 Importance of Microstrip Antennas in IoT -- 15.2.2 Uses of Microstrip Antenna in IoT -- 15.2.3 Satellite Communication -- 15.2.4 Smart Home Applications -- 15.2.5 Real-Time Weather Monitoring Systems -- 15.2.6 Medical Applications -- 15.3 Multiband Microstrip Patch Antennas in IoT -- 15.4 Conclusion -- References -- 16 Importance and Use of Microstrip Antennas in IoT -- 16.1 Introduction to Microstrip Patch Antennas -- 16.2 Introduction to IoT -- 16.2.1 Importance of Antenna Design in a Wireless Or IoT Product -- 16.2.2 Fields Where the Term IoT Is Used -- 16.3 Microstrip Patch Antennas and IoT -- 16.3.1 Microstrip Patch Antenna Design for IoT Applications 16.3.2 Design Challenges of Antennas for IoT Applications |
ctrlnum | (ZDB-30-PQE)EBC6792178 (ZDB-30-PAD)EBC6792178 (ZDB-89-EBL)EBL6792178 (OCoLC)1283844402 (DE-599)BVBBV048220995 |
discipline | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11388nmm a2200553zc 4500</leader><controlfield tag="001">BV048220995</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000417968</subfield><subfield code="9">978-1-00-041796-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003093558</subfield><subfield code="9">978-1-003-09355-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6792178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6792178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6792178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1283844402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048220995</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6440</subfield><subfield code="0">(DE-625)157563:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 710</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 720</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstrip antenna design for wireless applications</subfield><subfield code="c">edited by Praveen Kumar Malik, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 333 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Dedication -- Table of Contents -- Preface -- Organization of the Book -- Part I: Overview and Introduction -- Part II: Performance Analysis of Microstrip Antennas -- Part III: Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- Part IV: Fractal and Defected Ground Structure Microstrip Antennas -- Part V: Microstrip Antennas in Vehicular Communication -- Part VI: Importance and Use of Microstrip Antennas in IoT -- Part VII: Ultra-Wideband Antenna Design for Wearable Applications -- Part VIII: Microstrip Antenna Design for Miscellaneous Applications -- Editors -- Associate Editors -- Part I Overview and Introduction -- 1 Microstrip Patch Antenna Techniques for Wireless Applications -- 1.1 Introduction of Antennas -- 1.2 Rectangular Microstrip Patch Antennas -- 1.3 Fringing Effect in Microstrip Antennas -- 1.4 Microstrip Antenna Feeding Techniques -- 1.5 Comparison of Microstrip Antennas With Conventional Antennas -- 1.6 Advantages and Disadvantages of Microstrip Patch Antennas -- 1.7 Application of Microstrip Antennas -- 1.8 Conclusion -- References -- 2 A Review: Microstrip Patch Antennas for Ultra-Wideband -- 2.1 Introduction -- 2.2 Band-Notch Characteristics -- 2.3 10.6 GHz Bands -- 2.4 Under FCC Standard Band Greater Than 500 MHz -- 2.5 Conclusion -- References -- Part II Performance Analysis of Microstrip Antennas -- 3 Design and Performance Analysis of Microstrip Antennas Using Different Ground Plane Techniques for Wireless Applications -- 3.1 Introduction -- 3.2 Parameters of Microstrip Antennas -- 3.2.1 Gain -- 3.2.2 VSWR -- 3.2.3 Bandwidth -- 3.2.4 Return Loss -- 3.2.5 Shapes -- 3.3 Design Considerations -- 3.4 Fringing Effect -- 3.5 Principles -- 3.5.1 Properties -- 3.5.2 Feeding Methods -- 3.5.3 Contacting Type -- 3.5.4 Line Feed Microstrip -- 3.5.5 Probe Feed Microstrip</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5.6 Non-Contacting Type -- 3.5.7 Proximity Coupled Feed -- 3.5.8 Aperture Coupled Feed -- 3.6 Performance Analysis -- 3.7 Simulation and Results -- 3.8 Applications of Microstrip Patch Antennas -- 3.9 Multiple-Input Multiple-Output -- 3.10 Fractal and Defected Ground Structure Microstrip Antennas -- 3.11 Microstrip Antennas for Vehicular Communication -- 3.12 Importance and Use of Microstrip Antennas in IoT Applications -- 3.13 Ultra-Wideband Antenna Design for Wearable Applications -- References -- 4 Design and Simulation of High Gain Microstrip Patch Antennas Using Fabricated Perovskite Manganite Added Polymer ... -- 4.1 Introduction to MPA -- 4.2 Miniaturization of MPA -- 4.2.1 Dielectric Constant for Miniaturization of MPA -- 4.2.2 PerPolyN for MPA Design -- 4.3 Introduction to Perovskite - a Dielectric Material -- 4.4 PerPolyN as A Dielectric Material of MPA -- 4.5 Global Impact of MPA -- 4.6 Methodology of Perovskite Synthesis -- 4.7 Results and Conclusion -- 4.7.1 Antenna Design Parameters -- 4.7.2 Validation of Antenna Parameters -- References -- 5 Compact Microstrip Patch Antenna Design With Three I-, Two L-, One E- and One F-Shaped Patch for Wireless Applications -- 5.1 Introduction -- 5.2 Importance of a Good Antenna Design -- 5.3 Review of the Existing Techniques -- 5.4 Antenna Design Considerations of Proposed Work -- 5.4.1 Antenna Structure -- 5.4.2 Antenna Design in IE3D -- 5.5 Results and Simulation -- 5.5.1 Voltage Standing Wave Ratio -- 5.5.2 S-Parameter/Return Loss -- 5.5.3 Gain -- 5.5.4 Directivity -- 5.5.5 Radiation Efficiency -- 5.5.6 Antenna Efficiency -- 5.5.7 Radiation Pattern -- 5.6 Conclusion -- References -- 6 Design of Elliptically Etched Circular and Elliptical Printed Antennas for Dual-Band 5G Mobile Applications -- 6.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2 Design Models of the Elliptically Etched Circular and Elliptical Printed Antennas -- 6.3 Results and Discussion of the Presented Antennas -- 6.4 Conclusions -- References -- 7 Design and Analyses of Dual-Band Microstrip Patch Antennas for Wireless Communications -- 7.1 Introduction -- 7.2 Design of a Dual-Band Patch Antenna With Double Slots (DBDS) -- 7.3 Radiation Performance Analysis -- 7.4 Directivity and Gain Analysis -- 7.5 Surface Current Analysis of Antenna -- 7.6 Design of a Dual-Band Patch Antenna With Square Ring (DBSR) -- 7.7 Radiation Performance Analysis -- 7.7.1 Directivity and Gain Analysis -- 7.7.2 Surface Current Analysis of Antenna -- 7.8 Design of a Dual-Band Antenna With Bend Slots (DBBS) -- 7.9 Radiation Performance Analysis -- 7.9.1 Directivity and Gain Analysis -- 7.9.2 Surface Current Analysis of Antenna -- 7.10 Antenna Radiation Performance Comparison -- 7.11 Conclusion -- References -- Part III Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- 8 Multiple-Input Multiple-Output Antenna Design and Applications -- 8.1 Introduction -- 8.2 MIMO Technology -- 8.3 Implementation -- 8.3.1 Need of MIMO -- 8.3.2 The Need of Multiple Antennas -- 8.4 Diversity in MIMO -- 8.5 Design Challenges -- 8.6 Different Types of Antennas -- 8.6.1 Dipole and Monopole -- 8.6.2 Loop and Slot -- 8.6.3 Planar Antennas -- 8.6.4 Microstrip Antennas -- 8.6.5 Bow-Tie Antenna -- 8.6.6 Log Periodic Antenna -- 8.6.7 Leak Wave Antenna -- 8.6.8 Substrate Integrated Waveguide -- 8.7 Microstrip Antenna Design -- 8.7.1 The Transmission Line Technique -- 8.7.2 Cavity Mode -- 8.7.3 Antenna Shape -- 8.7.4 Single Component Antenna Without Spaces -- 8.7.5 H-Shaped Single Component -- 8.8 Diversity Technology in Mobile Communications -- 8.9 Antenna Arrays -- 8.9.1 Two-Component Cluster</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.9.2 Four-Component Antenna Cluster With Fixed Bar Controlling -- 8.9.3 N-Component Uniform Straight Exhibit -- 8.9.4 Structuring -- 8.9.5 Integrated Antenna -- 8.9.6 Phase Shifters -- 8.9.7 Fractal Antenna -- 8.10 Design of Handsets -- 8.11 Plan of Base Stations -- 8.12 MIMO Cellular Systems -- 8.13 Wideband 4G Communication -- 8.13.1 Multiband 5G Antenna Structure -- 8.13.2 MIMO in Cancer Recognition -- 8.13.3 Bluetooth MIMO -- 8.13.4 Antenna PDA -- 8.13.5 Designing Laptops -- 8.13.6 EBG -- 8.13.7 Photonic Bandgap -- 8.13.8 UWB MIMO Antenna -- 8.14 Conclusion -- References -- 9 A Survey of Fifth-Generation Cellular Communications Using MIMO for IoT Applications -- 9.1 Introduction -- 9.2 Key Capabilities of 5G Well-Defined By ITU-R -- 9.3 Features and Types of MIMOs -- 9.4 Multiple Access Techniques Used in 4G and 5G -- 9.5 Challenges and Solutions of 5G and MIMO -- 9.6 Development Scenario Towards 5G - IoT and MIMO -- 9.7 Conclusion -- Acronyms -- 10 Design Considerations in MIMO Antennas for Next-Generation 5G Wireless Communications -- 10.1 Introduction -- 10.2 Isolation Enhancement Techniques -- 10.2.1 Decoupling Network Technique -- 10.2.2 Parasitic Element Technique -- 10.2.3 Neutralization Line Technique -- 10.2.4 Isolation Through Metamaterial Techniques -- 10.3 Conclusion -- References -- 11 Design and Enhancement of MIMO Antennas for Smart 5G Devices -- 11.1 Introduction -- 11.1.1 Typical Applications -- 11.2 Inset Feeding -- 11.3 Design Calculations -- 11.4 Design and Simulation of MIMO Antennas -- 11.4.1 Design of MIMO Antenna Structures -- 11.4.2 Simulation Results -- 11.5 Conclusion -- References -- Part IV Fractal and Defected Ground Structure Microstrip Antennas -- 12 Compact Rhombus Rectangular Microstrip Fractal Antennas With Vertically Periodic Defected Ground Structure for Wireless ... -- 12.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.2 Antenna Design and Configuration -- 12.2.1 Directivity -- 12.2.2 Gain -- 12.2.3 Bandwidth -- 12.2.4 Return Loss -- 12.2.5 Cross-Polarization -- 12.2.6 Antenna With VPDGS -- 12.2.7 Antenna With Fractal Geometry -- 12.3 Simulation and Experimental Results -- 12.4 Conclusion -- References -- 13 Design and Analysis of Heptagon-Shaped Multiband Antennas With Multiple Notching for Wireless Applications -- 13.1 Introduction -- 13.2 Proposed Antenna Design With Simulation Results -- 13.2.1 Design 1 -- 13.2.2 Design 2 -- 13.2.3 Design 3 -- 13.3 Conclusion -- References -- Part V Microstrip Antennas in Vehicular Communication -- 14 Multifunctional Integrated Hybrid Rectangular Dielectric Resonator Antennas for High-Speed Communications -- 14.1 Introduction -- 14.2 Principle of Operation -- 14.3 Bandwidth Improvement Techniques -- 14.4 Structure of the Proposed Antenna -- 14.5 Results and Discussions -- 14.6 Conclusions -- References -- Part VI Importance and Use of Microstrip Antennas in IoT -- 15 Importance and Use of Microstrip Antennas in IoT: Opportunities and Challenges -- 15.1 Introduction -- 15.2 Importance and Use of Microstrip Antennas in IoT -- 15.2.1 Importance of Microstrip Antennas in IoT -- 15.2.2 Uses of Microstrip Antenna in IoT -- 15.2.3 Satellite Communication -- 15.2.4 Smart Home Applications -- 15.2.5 Real-Time Weather Monitoring Systems -- 15.2.6 Medical Applications -- 15.3 Multiband Microstrip Patch Antennas in IoT -- 15.4 Conclusion -- References -- 16 Importance and Use of Microstrip Antennas in IoT -- 16.1 Introduction to Microstrip Patch Antennas -- 16.2 Introduction to IoT -- 16.2.1 Importance of Antenna Design in a Wireless Or IoT Product -- 16.2.2 Fields Where the Term IoT Is Used -- 16.3 Microstrip Patch Antennas and IoT -- 16.3.1 Microstrip Patch Antenna Design for IoT Applications</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">16.3.2 Design Challenges of Antennas for IoT Applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Streifenleiterantenne</subfield><subfield code="0">(DE-588)4183635-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Streifenleiterantenne</subfield><subfield code="0">(DE-588)4183635-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malik, Praveen Kumar</subfield><subfield code="d">1975-</subfield><subfield code="0">(DE-588)1227757247</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanjeevikumar, Padmanaban</subfield><subfield code="d">1978-</subfield><subfield code="0">(DE-588)1220850691</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holm-Nielsen, Jens Bo</subfield><subfield code="0">(DE-588)1157033725</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Malik, Praveen Kumar</subfield><subfield code="t">Microstrip Antenna Design for Wireless Applications</subfield><subfield code="d">Milton : Taylor & Francis Group,c2021</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-55438-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-04788-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033601734</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6792178</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048220995 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781000417968 9781003093558 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601734 |
oclc_num | 1283844402 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 333 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
spelling | Microstrip antenna design for wireless applications edited by Praveen Kumar Malik, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen First edition Boca Raton ; London ; New York CRC Press 2022 © 2022 1 Online-Ressource (xviii, 333 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Dedication -- Table of Contents -- Preface -- Organization of the Book -- Part I: Overview and Introduction -- Part II: Performance Analysis of Microstrip Antennas -- Part III: Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- Part IV: Fractal and Defected Ground Structure Microstrip Antennas -- Part V: Microstrip Antennas in Vehicular Communication -- Part VI: Importance and Use of Microstrip Antennas in IoT -- Part VII: Ultra-Wideband Antenna Design for Wearable Applications -- Part VIII: Microstrip Antenna Design for Miscellaneous Applications -- Editors -- Associate Editors -- Part I Overview and Introduction -- 1 Microstrip Patch Antenna Techniques for Wireless Applications -- 1.1 Introduction of Antennas -- 1.2 Rectangular Microstrip Patch Antennas -- 1.3 Fringing Effect in Microstrip Antennas -- 1.4 Microstrip Antenna Feeding Techniques -- 1.5 Comparison of Microstrip Antennas With Conventional Antennas -- 1.6 Advantages and Disadvantages of Microstrip Patch Antennas -- 1.7 Application of Microstrip Antennas -- 1.8 Conclusion -- References -- 2 A Review: Microstrip Patch Antennas for Ultra-Wideband -- 2.1 Introduction -- 2.2 Band-Notch Characteristics -- 2.3 10.6 GHz Bands -- 2.4 Under FCC Standard Band Greater Than 500 MHz -- 2.5 Conclusion -- References -- Part II Performance Analysis of Microstrip Antennas -- 3 Design and Performance Analysis of Microstrip Antennas Using Different Ground Plane Techniques for Wireless Applications -- 3.1 Introduction -- 3.2 Parameters of Microstrip Antennas -- 3.2.1 Gain -- 3.2.2 VSWR -- 3.2.3 Bandwidth -- 3.2.4 Return Loss -- 3.2.5 Shapes -- 3.3 Design Considerations -- 3.4 Fringing Effect -- 3.5 Principles -- 3.5.1 Properties -- 3.5.2 Feeding Methods -- 3.5.3 Contacting Type -- 3.5.4 Line Feed Microstrip -- 3.5.5 Probe Feed Microstrip 3.5.6 Non-Contacting Type -- 3.5.7 Proximity Coupled Feed -- 3.5.8 Aperture Coupled Feed -- 3.6 Performance Analysis -- 3.7 Simulation and Results -- 3.8 Applications of Microstrip Patch Antennas -- 3.9 Multiple-Input Multiple-Output -- 3.10 Fractal and Defected Ground Structure Microstrip Antennas -- 3.11 Microstrip Antennas for Vehicular Communication -- 3.12 Importance and Use of Microstrip Antennas in IoT Applications -- 3.13 Ultra-Wideband Antenna Design for Wearable Applications -- References -- 4 Design and Simulation of High Gain Microstrip Patch Antennas Using Fabricated Perovskite Manganite Added Polymer ... -- 4.1 Introduction to MPA -- 4.2 Miniaturization of MPA -- 4.2.1 Dielectric Constant for Miniaturization of MPA -- 4.2.2 PerPolyN for MPA Design -- 4.3 Introduction to Perovskite - a Dielectric Material -- 4.4 PerPolyN as A Dielectric Material of MPA -- 4.5 Global Impact of MPA -- 4.6 Methodology of Perovskite Synthesis -- 4.7 Results and Conclusion -- 4.7.1 Antenna Design Parameters -- 4.7.2 Validation of Antenna Parameters -- References -- 5 Compact Microstrip Patch Antenna Design With Three I-, Two L-, One E- and One F-Shaped Patch for Wireless Applications -- 5.1 Introduction -- 5.2 Importance of a Good Antenna Design -- 5.3 Review of the Existing Techniques -- 5.4 Antenna Design Considerations of Proposed Work -- 5.4.1 Antenna Structure -- 5.4.2 Antenna Design in IE3D -- 5.5 Results and Simulation -- 5.5.1 Voltage Standing Wave Ratio -- 5.5.2 S-Parameter/Return Loss -- 5.5.3 Gain -- 5.5.4 Directivity -- 5.5.5 Radiation Efficiency -- 5.5.6 Antenna Efficiency -- 5.5.7 Radiation Pattern -- 5.6 Conclusion -- References -- 6 Design of Elliptically Etched Circular and Elliptical Printed Antennas for Dual-Band 5G Mobile Applications -- 6.1 Introduction 6.2 Design Models of the Elliptically Etched Circular and Elliptical Printed Antennas -- 6.3 Results and Discussion of the Presented Antennas -- 6.4 Conclusions -- References -- 7 Design and Analyses of Dual-Band Microstrip Patch Antennas for Wireless Communications -- 7.1 Introduction -- 7.2 Design of a Dual-Band Patch Antenna With Double Slots (DBDS) -- 7.3 Radiation Performance Analysis -- 7.4 Directivity and Gain Analysis -- 7.5 Surface Current Analysis of Antenna -- 7.6 Design of a Dual-Band Patch Antenna With Square Ring (DBSR) -- 7.7 Radiation Performance Analysis -- 7.7.1 Directivity and Gain Analysis -- 7.7.2 Surface Current Analysis of Antenna -- 7.8 Design of a Dual-Band Antenna With Bend Slots (DBBS) -- 7.9 Radiation Performance Analysis -- 7.9.1 Directivity and Gain Analysis -- 7.9.2 Surface Current Analysis of Antenna -- 7.10 Antenna Radiation Performance Comparison -- 7.11 Conclusion -- References -- Part III Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- 8 Multiple-Input Multiple-Output Antenna Design and Applications -- 8.1 Introduction -- 8.2 MIMO Technology -- 8.3 Implementation -- 8.3.1 Need of MIMO -- 8.3.2 The Need of Multiple Antennas -- 8.4 Diversity in MIMO -- 8.5 Design Challenges -- 8.6 Different Types of Antennas -- 8.6.1 Dipole and Monopole -- 8.6.2 Loop and Slot -- 8.6.3 Planar Antennas -- 8.6.4 Microstrip Antennas -- 8.6.5 Bow-Tie Antenna -- 8.6.6 Log Periodic Antenna -- 8.6.7 Leak Wave Antenna -- 8.6.8 Substrate Integrated Waveguide -- 8.7 Microstrip Antenna Design -- 8.7.1 The Transmission Line Technique -- 8.7.2 Cavity Mode -- 8.7.3 Antenna Shape -- 8.7.4 Single Component Antenna Without Spaces -- 8.7.5 H-Shaped Single Component -- 8.8 Diversity Technology in Mobile Communications -- 8.9 Antenna Arrays -- 8.9.1 Two-Component Cluster 8.9.2 Four-Component Antenna Cluster With Fixed Bar Controlling -- 8.9.3 N-Component Uniform Straight Exhibit -- 8.9.4 Structuring -- 8.9.5 Integrated Antenna -- 8.9.6 Phase Shifters -- 8.9.7 Fractal Antenna -- 8.10 Design of Handsets -- 8.11 Plan of Base Stations -- 8.12 MIMO Cellular Systems -- 8.13 Wideband 4G Communication -- 8.13.1 Multiband 5G Antenna Structure -- 8.13.2 MIMO in Cancer Recognition -- 8.13.3 Bluetooth MIMO -- 8.13.4 Antenna PDA -- 8.13.5 Designing Laptops -- 8.13.6 EBG -- 8.13.7 Photonic Bandgap -- 8.13.8 UWB MIMO Antenna -- 8.14 Conclusion -- References -- 9 A Survey of Fifth-Generation Cellular Communications Using MIMO for IoT Applications -- 9.1 Introduction -- 9.2 Key Capabilities of 5G Well-Defined By ITU-R -- 9.3 Features and Types of MIMOs -- 9.4 Multiple Access Techniques Used in 4G and 5G -- 9.5 Challenges and Solutions of 5G and MIMO -- 9.6 Development Scenario Towards 5G - IoT and MIMO -- 9.7 Conclusion -- Acronyms -- 10 Design Considerations in MIMO Antennas for Next-Generation 5G Wireless Communications -- 10.1 Introduction -- 10.2 Isolation Enhancement Techniques -- 10.2.1 Decoupling Network Technique -- 10.2.2 Parasitic Element Technique -- 10.2.3 Neutralization Line Technique -- 10.2.4 Isolation Through Metamaterial Techniques -- 10.3 Conclusion -- References -- 11 Design and Enhancement of MIMO Antennas for Smart 5G Devices -- 11.1 Introduction -- 11.1.1 Typical Applications -- 11.2 Inset Feeding -- 11.3 Design Calculations -- 11.4 Design and Simulation of MIMO Antennas -- 11.4.1 Design of MIMO Antenna Structures -- 11.4.2 Simulation Results -- 11.5 Conclusion -- References -- Part IV Fractal and Defected Ground Structure Microstrip Antennas -- 12 Compact Rhombus Rectangular Microstrip Fractal Antennas With Vertically Periodic Defected Ground Structure for Wireless ... -- 12.1 Introduction 12.2 Antenna Design and Configuration -- 12.2.1 Directivity -- 12.2.2 Gain -- 12.2.3 Bandwidth -- 12.2.4 Return Loss -- 12.2.5 Cross-Polarization -- 12.2.6 Antenna With VPDGS -- 12.2.7 Antenna With Fractal Geometry -- 12.3 Simulation and Experimental Results -- 12.4 Conclusion -- References -- 13 Design and Analysis of Heptagon-Shaped Multiband Antennas With Multiple Notching for Wireless Applications -- 13.1 Introduction -- 13.2 Proposed Antenna Design With Simulation Results -- 13.2.1 Design 1 -- 13.2.2 Design 2 -- 13.2.3 Design 3 -- 13.3 Conclusion -- References -- Part V Microstrip Antennas in Vehicular Communication -- 14 Multifunctional Integrated Hybrid Rectangular Dielectric Resonator Antennas for High-Speed Communications -- 14.1 Introduction -- 14.2 Principle of Operation -- 14.3 Bandwidth Improvement Techniques -- 14.4 Structure of the Proposed Antenna -- 14.5 Results and Discussions -- 14.6 Conclusions -- References -- Part VI Importance and Use of Microstrip Antennas in IoT -- 15 Importance and Use of Microstrip Antennas in IoT: Opportunities and Challenges -- 15.1 Introduction -- 15.2 Importance and Use of Microstrip Antennas in IoT -- 15.2.1 Importance of Microstrip Antennas in IoT -- 15.2.2 Uses of Microstrip Antenna in IoT -- 15.2.3 Satellite Communication -- 15.2.4 Smart Home Applications -- 15.2.5 Real-Time Weather Monitoring Systems -- 15.2.6 Medical Applications -- 15.3 Multiband Microstrip Patch Antennas in IoT -- 15.4 Conclusion -- References -- 16 Importance and Use of Microstrip Antennas in IoT -- 16.1 Introduction to Microstrip Patch Antennas -- 16.2 Introduction to IoT -- 16.2.1 Importance of Antenna Design in a Wireless Or IoT Product -- 16.2.2 Fields Where the Term IoT Is Used -- 16.3 Microstrip Patch Antennas and IoT -- 16.3.1 Microstrip Patch Antenna Design for IoT Applications 16.3.2 Design Challenges of Antennas for IoT Applications Streifenleiterantenne (DE-588)4183635-2 gnd rswk-swf Streifenleiterantenne (DE-588)4183635-2 s DE-604 Malik, Praveen Kumar 1975- (DE-588)1227757247 edt Sanjeevikumar, Padmanaban 1978- (DE-588)1220850691 edt Holm-Nielsen, Jens Bo (DE-588)1157033725 edt Erscheint auch als Malik, Praveen Kumar Microstrip Antenna Design for Wireless Applications Milton : Taylor & Francis Group,c2021 Druck-Ausgabe, Hardcover 978-0-367-55438-5 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-04788-1 |
spellingShingle | Microstrip antenna design for wireless applications Cover -- Half Title -- Title Page -- Dedication -- Table of Contents -- Preface -- Organization of the Book -- Part I: Overview and Introduction -- Part II: Performance Analysis of Microstrip Antennas -- Part III: Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- Part IV: Fractal and Defected Ground Structure Microstrip Antennas -- Part V: Microstrip Antennas in Vehicular Communication -- Part VI: Importance and Use of Microstrip Antennas in IoT -- Part VII: Ultra-Wideband Antenna Design for Wearable Applications -- Part VIII: Microstrip Antenna Design for Miscellaneous Applications -- Editors -- Associate Editors -- Part I Overview and Introduction -- 1 Microstrip Patch Antenna Techniques for Wireless Applications -- 1.1 Introduction of Antennas -- 1.2 Rectangular Microstrip Patch Antennas -- 1.3 Fringing Effect in Microstrip Antennas -- 1.4 Microstrip Antenna Feeding Techniques -- 1.5 Comparison of Microstrip Antennas With Conventional Antennas -- 1.6 Advantages and Disadvantages of Microstrip Patch Antennas -- 1.7 Application of Microstrip Antennas -- 1.8 Conclusion -- References -- 2 A Review: Microstrip Patch Antennas for Ultra-Wideband -- 2.1 Introduction -- 2.2 Band-Notch Characteristics -- 2.3 10.6 GHz Bands -- 2.4 Under FCC Standard Band Greater Than 500 MHz -- 2.5 Conclusion -- References -- Part II Performance Analysis of Microstrip Antennas -- 3 Design and Performance Analysis of Microstrip Antennas Using Different Ground Plane Techniques for Wireless Applications -- 3.1 Introduction -- 3.2 Parameters of Microstrip Antennas -- 3.2.1 Gain -- 3.2.2 VSWR -- 3.2.3 Bandwidth -- 3.2.4 Return Loss -- 3.2.5 Shapes -- 3.3 Design Considerations -- 3.4 Fringing Effect -- 3.5 Principles -- 3.5.1 Properties -- 3.5.2 Feeding Methods -- 3.5.3 Contacting Type -- 3.5.4 Line Feed Microstrip -- 3.5.5 Probe Feed Microstrip 3.5.6 Non-Contacting Type -- 3.5.7 Proximity Coupled Feed -- 3.5.8 Aperture Coupled Feed -- 3.6 Performance Analysis -- 3.7 Simulation and Results -- 3.8 Applications of Microstrip Patch Antennas -- 3.9 Multiple-Input Multiple-Output -- 3.10 Fractal and Defected Ground Structure Microstrip Antennas -- 3.11 Microstrip Antennas for Vehicular Communication -- 3.12 Importance and Use of Microstrip Antennas in IoT Applications -- 3.13 Ultra-Wideband Antenna Design for Wearable Applications -- References -- 4 Design and Simulation of High Gain Microstrip Patch Antennas Using Fabricated Perovskite Manganite Added Polymer ... -- 4.1 Introduction to MPA -- 4.2 Miniaturization of MPA -- 4.2.1 Dielectric Constant for Miniaturization of MPA -- 4.2.2 PerPolyN for MPA Design -- 4.3 Introduction to Perovskite - a Dielectric Material -- 4.4 PerPolyN as A Dielectric Material of MPA -- 4.5 Global Impact of MPA -- 4.6 Methodology of Perovskite Synthesis -- 4.7 Results and Conclusion -- 4.7.1 Antenna Design Parameters -- 4.7.2 Validation of Antenna Parameters -- References -- 5 Compact Microstrip Patch Antenna Design With Three I-, Two L-, One E- and One F-Shaped Patch for Wireless Applications -- 5.1 Introduction -- 5.2 Importance of a Good Antenna Design -- 5.3 Review of the Existing Techniques -- 5.4 Antenna Design Considerations of Proposed Work -- 5.4.1 Antenna Structure -- 5.4.2 Antenna Design in IE3D -- 5.5 Results and Simulation -- 5.5.1 Voltage Standing Wave Ratio -- 5.5.2 S-Parameter/Return Loss -- 5.5.3 Gain -- 5.5.4 Directivity -- 5.5.5 Radiation Efficiency -- 5.5.6 Antenna Efficiency -- 5.5.7 Radiation Pattern -- 5.6 Conclusion -- References -- 6 Design of Elliptically Etched Circular and Elliptical Printed Antennas for Dual-Band 5G Mobile Applications -- 6.1 Introduction 6.2 Design Models of the Elliptically Etched Circular and Elliptical Printed Antennas -- 6.3 Results and Discussion of the Presented Antennas -- 6.4 Conclusions -- References -- 7 Design and Analyses of Dual-Band Microstrip Patch Antennas for Wireless Communications -- 7.1 Introduction -- 7.2 Design of a Dual-Band Patch Antenna With Double Slots (DBDS) -- 7.3 Radiation Performance Analysis -- 7.4 Directivity and Gain Analysis -- 7.5 Surface Current Analysis of Antenna -- 7.6 Design of a Dual-Band Patch Antenna With Square Ring (DBSR) -- 7.7 Radiation Performance Analysis -- 7.7.1 Directivity and Gain Analysis -- 7.7.2 Surface Current Analysis of Antenna -- 7.8 Design of a Dual-Band Antenna With Bend Slots (DBBS) -- 7.9 Radiation Performance Analysis -- 7.9.1 Directivity and Gain Analysis -- 7.9.2 Surface Current Analysis of Antenna -- 7.10 Antenna Radiation Performance Comparison -- 7.11 Conclusion -- References -- Part III Multiple-Input Multiple-Output (MIMO) Antenna Design and Its Applications -- 8 Multiple-Input Multiple-Output Antenna Design and Applications -- 8.1 Introduction -- 8.2 MIMO Technology -- 8.3 Implementation -- 8.3.1 Need of MIMO -- 8.3.2 The Need of Multiple Antennas -- 8.4 Diversity in MIMO -- 8.5 Design Challenges -- 8.6 Different Types of Antennas -- 8.6.1 Dipole and Monopole -- 8.6.2 Loop and Slot -- 8.6.3 Planar Antennas -- 8.6.4 Microstrip Antennas -- 8.6.5 Bow-Tie Antenna -- 8.6.6 Log Periodic Antenna -- 8.6.7 Leak Wave Antenna -- 8.6.8 Substrate Integrated Waveguide -- 8.7 Microstrip Antenna Design -- 8.7.1 The Transmission Line Technique -- 8.7.2 Cavity Mode -- 8.7.3 Antenna Shape -- 8.7.4 Single Component Antenna Without Spaces -- 8.7.5 H-Shaped Single Component -- 8.8 Diversity Technology in Mobile Communications -- 8.9 Antenna Arrays -- 8.9.1 Two-Component Cluster 8.9.2 Four-Component Antenna Cluster With Fixed Bar Controlling -- 8.9.3 N-Component Uniform Straight Exhibit -- 8.9.4 Structuring -- 8.9.5 Integrated Antenna -- 8.9.6 Phase Shifters -- 8.9.7 Fractal Antenna -- 8.10 Design of Handsets -- 8.11 Plan of Base Stations -- 8.12 MIMO Cellular Systems -- 8.13 Wideband 4G Communication -- 8.13.1 Multiband 5G Antenna Structure -- 8.13.2 MIMO in Cancer Recognition -- 8.13.3 Bluetooth MIMO -- 8.13.4 Antenna PDA -- 8.13.5 Designing Laptops -- 8.13.6 EBG -- 8.13.7 Photonic Bandgap -- 8.13.8 UWB MIMO Antenna -- 8.14 Conclusion -- References -- 9 A Survey of Fifth-Generation Cellular Communications Using MIMO for IoT Applications -- 9.1 Introduction -- 9.2 Key Capabilities of 5G Well-Defined By ITU-R -- 9.3 Features and Types of MIMOs -- 9.4 Multiple Access Techniques Used in 4G and 5G -- 9.5 Challenges and Solutions of 5G and MIMO -- 9.6 Development Scenario Towards 5G - IoT and MIMO -- 9.7 Conclusion -- Acronyms -- 10 Design Considerations in MIMO Antennas for Next-Generation 5G Wireless Communications -- 10.1 Introduction -- 10.2 Isolation Enhancement Techniques -- 10.2.1 Decoupling Network Technique -- 10.2.2 Parasitic Element Technique -- 10.2.3 Neutralization Line Technique -- 10.2.4 Isolation Through Metamaterial Techniques -- 10.3 Conclusion -- References -- 11 Design and Enhancement of MIMO Antennas for Smart 5G Devices -- 11.1 Introduction -- 11.1.1 Typical Applications -- 11.2 Inset Feeding -- 11.3 Design Calculations -- 11.4 Design and Simulation of MIMO Antennas -- 11.4.1 Design of MIMO Antenna Structures -- 11.4.2 Simulation Results -- 11.5 Conclusion -- References -- Part IV Fractal and Defected Ground Structure Microstrip Antennas -- 12 Compact Rhombus Rectangular Microstrip Fractal Antennas With Vertically Periodic Defected Ground Structure for Wireless ... -- 12.1 Introduction 12.2 Antenna Design and Configuration -- 12.2.1 Directivity -- 12.2.2 Gain -- 12.2.3 Bandwidth -- 12.2.4 Return Loss -- 12.2.5 Cross-Polarization -- 12.2.6 Antenna With VPDGS -- 12.2.7 Antenna With Fractal Geometry -- 12.3 Simulation and Experimental Results -- 12.4 Conclusion -- References -- 13 Design and Analysis of Heptagon-Shaped Multiband Antennas With Multiple Notching for Wireless Applications -- 13.1 Introduction -- 13.2 Proposed Antenna Design With Simulation Results -- 13.2.1 Design 1 -- 13.2.2 Design 2 -- 13.2.3 Design 3 -- 13.3 Conclusion -- References -- Part V Microstrip Antennas in Vehicular Communication -- 14 Multifunctional Integrated Hybrid Rectangular Dielectric Resonator Antennas for High-Speed Communications -- 14.1 Introduction -- 14.2 Principle of Operation -- 14.3 Bandwidth Improvement Techniques -- 14.4 Structure of the Proposed Antenna -- 14.5 Results and Discussions -- 14.6 Conclusions -- References -- Part VI Importance and Use of Microstrip Antennas in IoT -- 15 Importance and Use of Microstrip Antennas in IoT: Opportunities and Challenges -- 15.1 Introduction -- 15.2 Importance and Use of Microstrip Antennas in IoT -- 15.2.1 Importance of Microstrip Antennas in IoT -- 15.2.2 Uses of Microstrip Antenna in IoT -- 15.2.3 Satellite Communication -- 15.2.4 Smart Home Applications -- 15.2.5 Real-Time Weather Monitoring Systems -- 15.2.6 Medical Applications -- 15.3 Multiband Microstrip Patch Antennas in IoT -- 15.4 Conclusion -- References -- 16 Importance and Use of Microstrip Antennas in IoT -- 16.1 Introduction to Microstrip Patch Antennas -- 16.2 Introduction to IoT -- 16.2.1 Importance of Antenna Design in a Wireless Or IoT Product -- 16.2.2 Fields Where the Term IoT Is Used -- 16.3 Microstrip Patch Antennas and IoT -- 16.3.1 Microstrip Patch Antenna Design for IoT Applications 16.3.2 Design Challenges of Antennas for IoT Applications Streifenleiterantenne (DE-588)4183635-2 gnd |
subject_GND | (DE-588)4183635-2 |
title | Microstrip antenna design for wireless applications |
title_auth | Microstrip antenna design for wireless applications |
title_exact_search | Microstrip antenna design for wireless applications |
title_exact_search_txtP | Microstrip antenna design for wireless applications |
title_full | Microstrip antenna design for wireless applications edited by Praveen Kumar Malik, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen |
title_fullStr | Microstrip antenna design for wireless applications edited by Praveen Kumar Malik, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen |
title_full_unstemmed | Microstrip antenna design for wireless applications edited by Praveen Kumar Malik, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen |
title_short | Microstrip antenna design for wireless applications |
title_sort | microstrip antenna design for wireless applications |
topic | Streifenleiterantenne (DE-588)4183635-2 gnd |
topic_facet | Streifenleiterantenne |
work_keys_str_mv | AT malikpraveenkumar microstripantennadesignforwirelessapplications AT sanjeevikumarpadmanaban microstripantennadesignforwirelessapplications AT holmnielsenjensbo microstripantennadesignforwirelessapplications |