5G NR and enhancements: from R15 to R16
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambrigde, MA, United States
Elsevier
2022
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxv, 1041 Seiten) Illustrationen, Diagramme |
ISBN: | 9780323911191 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048220990 | ||
003 | DE-604 | ||
005 | 20240216 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9780323911191 |9 978-0-323-91119-1 | ||
035 | |a (ZDB-30-PQE)EBC6791562 | ||
035 | |a (ZDB-30-PAD)EBC6791562 | ||
035 | |a (ZDB-89-EBL)EBL6791562 | ||
035 | |a (OCoLC)1281138007 | ||
035 | |a (DE-599)BVBBV048220990 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 621.38456 | |
084 | |a ZN 6560 |0 (DE-625)157572: |2 rvk | ||
084 | |a ELT 620 |2 stub | ||
084 | |a ELT 745 |2 stub | ||
245 | 1 | 0 | |a 5G NR and enhancements |b from R15 to R16 |c edited by Jia Shen, Zhongda Du, Zhi Zhang, Ning Yang, Hai Tang |
264 | 1 | |a Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambrigde, MA, United States |b Elsevier |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xxv, 1041 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Front Cover -- 5G NR and Enhancements -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Overview -- 1.1 Introduction -- 1.2 Enhanced evolution of new radio over LTE -- 1.2.1 New radio supports a higher band range -- 1.2.2 New radio supports wide bandwidth -- 1.2.3 New radio supports more flexible frame structure -- 1.2.4 New radio supports flexible numerology -- 1.2.5 Low-latency enhancements of air interface by new radio -- 1.2.6 Enhancement of reference signals in new radio -- 1.2.7 Multiple input multiple output capability enhancement by new radio -- 1.2.8 Enhancement of terminal power saving by new radio -- 1.2.9 Mobility enhancement by new radio -- 1.2.10 Enhancement of quality of service guarantee by new radio -- 1.2.11 Enhancement of core network architecture evolution by new radio -- 1.3 New radio's choice of new technology -- 1.3.1 New radio's choice on new numerology -- 1.3.2 New radio's choice on new waveform -- 1.3.3 New radio's choice on new coding -- 1.3.4 New radio's choice on new multiple access -- 1.4 Maturity of 5G technology, devices, and equipment -- 1.4.1 The development and maturity of digital devices and chips have well supported the research and development needs of 5... -- 1.4.2 5G active large-scale antenna equipment can meet the engineering and commercial requirements -- 1.4.3 Millimeter wave technology-devices and equipment are becoming more and more mature -- 1.5 R16 enhancement technology -- 1.5.1 Multiple input multiple output enhancement -- 1.5.1.1 eType II codebook -- 1.5.1.2 Multitransmission and reception points enhancement -- 1.5.1.3 Multibeam transmission enhancement -- 1.5.1.4 Uplink full-power Tx -- 1.5.2 Ultrareliable and low latency communications enhancement-physical layer -- 1.5.3 Ultrareliable and low latency communications enhancement high layer | |
505 | 8 | |a 1.5.3.1 Supporting time-sensitive communication -- 1.5.3.2 Data replication and multiconnection enhancement -- 1.5.3.3 Intrauser priority/reuse enhancement -- 1.5.4 UE power-saving enhancement -- 1.5.5 Two-step RACH -- 1.5.6 Uplink band switching transmission -- 1.5.7 Mobility enhancement -- 1.5.7.1 Dual active protocol stack enhancement -- 1.5.7.2 Conditional handover -- 1.5.8 Multi-RAT dual connectivity enhancement -- 1.5.9 New radio-vehicle to everything -- 1.5.10 New radio-unlicensed -- 1.6 Summary -- References -- 2 Requirements and scenarios of 5G system -- 2.1 Current needs and requirements in the 5G era -- 2.1.1 Requirements of high data rate -- 2.1.1.1 Enhanced multimedia service -- 2.1.1.2 Immersive interactive multimedia services -- 2.1.1.3 Hotspot services -- 2.1.2 Requirements from vertical industries -- 2.1.2.1 Low-latency communication -- 2.1.2.2 Reliable communication -- 2.1.2.3 Internet of Things communication -- 2.1.2.4 High-speed communication -- 2.1.2.5 High-precision positioning communication -- 2.2 Typical scenarios -- 2.2.1 Enhanced mobile broadband -- 2.2.2 Ultrareliable and low latency communications -- 2.2.3 Massive machine type communications -- 2.3 Key indicators of 5G systems -- 2.4 Summary -- References -- 3 5G system architecture -- 3.1 5G system architecture -- 3.1.1 5G system architecture requirements -- 3.1.2 5G system architecture and functional entities -- 3.1.2.1 Loose coupling and service-oriented network element functions -- 3.1.2.2 Open and secure network interface -- 3.1.2.3 Unified network function management -- 3.1.2.4 Enable continuous integration/continuous deployment time to market microservices -- 3.1.3 5G end-to-end architecture and protocol stack based on 3rd Generation Partnership Project access -- 3.1.3.1 End-to-end protocol stack of 5G control plane based on 3rd Generation Partnership Project access | |
505 | 8 | |a 3.1.3.2 End-to-end protocol stack of 5G User Plane based on 3rd Generation Partnership Project access -- 3.1.4 5G end-to-end architecture and protocol stack based on non-3rd Generation Partnership Project access -- 3.1.5 5G system identifiers -- 3.2 The 5G RAN architecture and deployment options -- 3.2.1 Description of EN-DC and SA arechitecture -- 3.3 Summary -- References -- Further reading -- 4 Bandwidth part -- 4.1 Basic concept of bandwidth part -- 4.1.1 Motivation from resource allocations with multiple subcarrier spacings -- 4.1.2 Motivations from UE capability and power saving -- 4.1.3 Basic bandwidth part concept -- 4.1.4 Use cases of bandwidth part -- 4.1.5 What if bandwidth part contains synchronization signal/physical broadcast channel block? -- 4.1.6 Number of simultaneously active bandwidth parts -- 4.1.7 Relation between bandwidth part and carrier aggregation -- 4.2 Bandwidth part configuration -- 4.2.1 Introduction of common RB -- 4.2.2 Granularity of common RB -- 4.2.3 Reference point-point A -- 4.2.4 The starting point of common RB-RB 0 -- 4.2.5 Indication method of carrier starting point -- 4.2.6 Bandwidth part indication method -- 4.2.7 Summary of the basic bandwidth part configuration method -- 4.2.8 Number of configurable bandwidth parts -- 4.2.9 Bandwidth part configuration in the TDD system -- 4.3 Bandwidth part switching -- 4.3.1 Dynamic switching versus semistatic switching -- 4.3.2 Introduction of bandwidth part activation method based on DCI -- 4.3.3 DCI design for triggering bandwidth part switching-DCI format -- 4.3.4 DCI design for triggering bandwidth part switching-"explicitly trigger" versus "implicitly trigger" -- 4.3.5 DCI design for triggering bandwidth part switching-bandwidth part indicator -- 4.3.6 Introduction of timer-based bandwidth part fallback | |
505 | 8 | |a 4.3.7 Whether to reuse discontinuous reception timer to implement bandwidth part fallback? -- 4.3.7.1 Review of discontinuous reception timer -- 4.3.7.2 Whether to reuse discontinuous reception timer for bandwidth part fallback timer? -- 4.3.8 Bandwidth part inactivity timer design -- 4.3.8.1 Configuration of bwp-InactivityTimer -- 4.3.8.2 Condition to start/restart bwp-InactivityTimer -- 4.3.8.3 Condition to stop bwp-InactivityTimer -- 4.3.9 Timer-based uplink bandwidth part switching -- 4.3.10 Time-pattern-based bandwidth part switching -- 4.3.10.1 The principle of time-pattern-based bandwidth part switching -- 4.3.10.2 The competition between time-pattern-based bandwidth part switching and timer-based bandwidth part switching -- 4.3.10.3 The reason why time-pattern-based bandwidth part switching was not adopted -- 4.3.11 Automatic bandwidth part switching -- 4.3.11.1 Paired switching of DL bandwidth part and UL bandwidth part in TDD -- 4.3.11.2 DL BWP switching caused by random access -- 4.3.12 Bandwidth part switching delay -- 4.4 Bandwidth part in initial access -- 4.4.1 Introduction of initial DL bandwidth part -- 4.4.2 Introduction of initial UL bandwidth part -- 4.4.3 Initial DL bandwidth part configuration -- 4.4.4 Relationship between the initial DL bandwidth part and default DL bandwidth part -- 4.4.5 Initial bandwidth part in carrier aggregation -- 4.5 Impact of bandwidth part on other physical layer designs -- 4.5.1 Impact of bandwidth part switching delay -- 4.5.2 Bandwidth part-dedicated and bandwidth part-common parameter configuration -- 4.6 Summary -- References -- 5 5G flexible scheduling -- 5.1 Principle of flexible scheduling -- 5.1.1 Limitation of LTE system scheduling design -- 5.1.2 Scheduling flexibility in the frequency domain -- 5.1.2.1 Resource allocation based on bandwidth part | |
505 | 8 | |a 5.1.2.2 Increase granularity of frequency-domain resource allocation -- 5.1.2.3 Adopt more dynamic resource indication signaling -- 5.1.3 Scheduling flexibility in the time domain -- 5.1.3.1 Low-latency transmission -- 5.1.3.2 Multibeam transmission -- 5.1.3.3 Flexible multiplexing between channels -- 5.1.3.4 Effectively support unlicensed spectrum operation -- 5.2 5G resource allocation -- 5.2.1 Optimization of resource allocation types in the frequency domain -- 5.2.2 Granularity of resource allocation in the frequency domain -- 5.2.3 Frequency-domain resource indication during BWP switching -- 5.2.4 Determination of frequency-hopping resources in BWP -- 5.2.5 Introduction to symbol-level scheduling -- 5.2.6 Reference time for indication of starting symbol -- 5.2.7 Reference SCS for indication of K0 or K2 -- 5.2.8 Resource mapping type: type A and type B -- 5.2.9 Time-domain resource allocation -- 5.2.10 Multislot transmission -- 5.3 Code Block Group -- 5.3.1 Introduction of Code Block Group transmission -- 5.3.2 CBG construction -- 5.3.3 CBG retransmission -- 5.3.4 DL control signaling for CBG-based transmission -- 5.3.5 UL control signaling for CBG-based transmission -- 5.4 Design of NR PDCCH -- 5.4.1 Considerations of NR PDCCH design -- 5.4.1.1 Changing from cell-specific PDCCH resources to UE-specific PDCCH resources -- 5.4.1.2 PDCCH "floating" in the time domain -- 5.4.1.3 Reduced complexity of DCI detection -- 5.4.2 Control Resource Set -- 5.4.2.1 External structure of CORESET -- 5.4.2.2 Internal structure of CORESET -- 5.4.3 Search-space set -- 5.4.4 DCI design -- 5.4.4.1 The choice of two-stage DCI -- 5.4.4.2 Introduction of group-common DCI -- 5.5 Design of NR PUCCH -- 5.5.1 Introduction of short-PUCCH and long-PUCCH -- 5.5.2 Design of short-PUCCH -- 5.5.3 Design of long-PUCCH -- 5.5.4 PUCCH resource allocation | |
505 | 8 | |a 5.5.5 PUCCH colliding with other UL channels | |
650 | 0 | 7 | |a Mobilfunkstandard |0 (DE-588)1172778450 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a 5G |0 (DE-588)1188755676 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a 5G |0 (DE-588)1188755676 |D s |
689 | 0 | 1 | |a Mobilfunkstandard |0 (DE-588)1172778450 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shen, Jia |d ca. 20./21. Jh. |0 (DE-588)1252686560 |4 edt | |
700 | 1 | |a Du, Zhongda |4 edt | |
700 | 1 | |a Zhang, Zhi |4 edt | |
700 | 1 | |a Yang, Ning |d ca. 20./21. Jh. |0 (DE-588)1252688644 |4 edt | |
700 | 1 | |a Tang, Hai |d ca. 20./21. Jh. |0 (DE-588)1252688903 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Tang, Hai |t 5G NR and Enhancements |d San Diego : Elsevier,c2021 |n Druck-Ausgabe |z 978-0-323-91060-6 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033601729 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6791562 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002020507648 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Shen, Jia ca. 20./21. Jh Du, Zhongda Zhang, Zhi Yang, Ning ca. 20./21. Jh Tang, Hai ca. 20./21. Jh |
author2_role | edt edt edt edt edt |
author2_variant | j s js z d zd z z zz n y ny h t ht |
author_GND | (DE-588)1252686560 (DE-588)1252688644 (DE-588)1252688903 |
author_facet | Shen, Jia ca. 20./21. Jh Du, Zhongda Zhang, Zhi Yang, Ning ca. 20./21. Jh Tang, Hai ca. 20./21. Jh |
building | Verbundindex |
bvnumber | BV048220990 |
classification_rvk | ZN 6560 |
classification_tum | ELT 620 ELT 745 |
collection | ZDB-30-PQE |
contents | Front Cover -- 5G NR and Enhancements -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Overview -- 1.1 Introduction -- 1.2 Enhanced evolution of new radio over LTE -- 1.2.1 New radio supports a higher band range -- 1.2.2 New radio supports wide bandwidth -- 1.2.3 New radio supports more flexible frame structure -- 1.2.4 New radio supports flexible numerology -- 1.2.5 Low-latency enhancements of air interface by new radio -- 1.2.6 Enhancement of reference signals in new radio -- 1.2.7 Multiple input multiple output capability enhancement by new radio -- 1.2.8 Enhancement of terminal power saving by new radio -- 1.2.9 Mobility enhancement by new radio -- 1.2.10 Enhancement of quality of service guarantee by new radio -- 1.2.11 Enhancement of core network architecture evolution by new radio -- 1.3 New radio's choice of new technology -- 1.3.1 New radio's choice on new numerology -- 1.3.2 New radio's choice on new waveform -- 1.3.3 New radio's choice on new coding -- 1.3.4 New radio's choice on new multiple access -- 1.4 Maturity of 5G technology, devices, and equipment -- 1.4.1 The development and maturity of digital devices and chips have well supported the research and development needs of 5... -- 1.4.2 5G active large-scale antenna equipment can meet the engineering and commercial requirements -- 1.4.3 Millimeter wave technology-devices and equipment are becoming more and more mature -- 1.5 R16 enhancement technology -- 1.5.1 Multiple input multiple output enhancement -- 1.5.1.1 eType II codebook -- 1.5.1.2 Multitransmission and reception points enhancement -- 1.5.1.3 Multibeam transmission enhancement -- 1.5.1.4 Uplink full-power Tx -- 1.5.2 Ultrareliable and low latency communications enhancement-physical layer -- 1.5.3 Ultrareliable and low latency communications enhancement high layer 1.5.3.1 Supporting time-sensitive communication -- 1.5.3.2 Data replication and multiconnection enhancement -- 1.5.3.3 Intrauser priority/reuse enhancement -- 1.5.4 UE power-saving enhancement -- 1.5.5 Two-step RACH -- 1.5.6 Uplink band switching transmission -- 1.5.7 Mobility enhancement -- 1.5.7.1 Dual active protocol stack enhancement -- 1.5.7.2 Conditional handover -- 1.5.8 Multi-RAT dual connectivity enhancement -- 1.5.9 New radio-vehicle to everything -- 1.5.10 New radio-unlicensed -- 1.6 Summary -- References -- 2 Requirements and scenarios of 5G system -- 2.1 Current needs and requirements in the 5G era -- 2.1.1 Requirements of high data rate -- 2.1.1.1 Enhanced multimedia service -- 2.1.1.2 Immersive interactive multimedia services -- 2.1.1.3 Hotspot services -- 2.1.2 Requirements from vertical industries -- 2.1.2.1 Low-latency communication -- 2.1.2.2 Reliable communication -- 2.1.2.3 Internet of Things communication -- 2.1.2.4 High-speed communication -- 2.1.2.5 High-precision positioning communication -- 2.2 Typical scenarios -- 2.2.1 Enhanced mobile broadband -- 2.2.2 Ultrareliable and low latency communications -- 2.2.3 Massive machine type communications -- 2.3 Key indicators of 5G systems -- 2.4 Summary -- References -- 3 5G system architecture -- 3.1 5G system architecture -- 3.1.1 5G system architecture requirements -- 3.1.2 5G system architecture and functional entities -- 3.1.2.1 Loose coupling and service-oriented network element functions -- 3.1.2.2 Open and secure network interface -- 3.1.2.3 Unified network function management -- 3.1.2.4 Enable continuous integration/continuous deployment time to market microservices -- 3.1.3 5G end-to-end architecture and protocol stack based on 3rd Generation Partnership Project access -- 3.1.3.1 End-to-end protocol stack of 5G control plane based on 3rd Generation Partnership Project access 3.1.3.2 End-to-end protocol stack of 5G User Plane based on 3rd Generation Partnership Project access -- 3.1.4 5G end-to-end architecture and protocol stack based on non-3rd Generation Partnership Project access -- 3.1.5 5G system identifiers -- 3.2 The 5G RAN architecture and deployment options -- 3.2.1 Description of EN-DC and SA arechitecture -- 3.3 Summary -- References -- Further reading -- 4 Bandwidth part -- 4.1 Basic concept of bandwidth part -- 4.1.1 Motivation from resource allocations with multiple subcarrier spacings -- 4.1.2 Motivations from UE capability and power saving -- 4.1.3 Basic bandwidth part concept -- 4.1.4 Use cases of bandwidth part -- 4.1.5 What if bandwidth part contains synchronization signal/physical broadcast channel block? -- 4.1.6 Number of simultaneously active bandwidth parts -- 4.1.7 Relation between bandwidth part and carrier aggregation -- 4.2 Bandwidth part configuration -- 4.2.1 Introduction of common RB -- 4.2.2 Granularity of common RB -- 4.2.3 Reference point-point A -- 4.2.4 The starting point of common RB-RB 0 -- 4.2.5 Indication method of carrier starting point -- 4.2.6 Bandwidth part indication method -- 4.2.7 Summary of the basic bandwidth part configuration method -- 4.2.8 Number of configurable bandwidth parts -- 4.2.9 Bandwidth part configuration in the TDD system -- 4.3 Bandwidth part switching -- 4.3.1 Dynamic switching versus semistatic switching -- 4.3.2 Introduction of bandwidth part activation method based on DCI -- 4.3.3 DCI design for triggering bandwidth part switching-DCI format -- 4.3.4 DCI design for triggering bandwidth part switching-"explicitly trigger" versus "implicitly trigger" -- 4.3.5 DCI design for triggering bandwidth part switching-bandwidth part indicator -- 4.3.6 Introduction of timer-based bandwidth part fallback 4.3.7 Whether to reuse discontinuous reception timer to implement bandwidth part fallback? -- 4.3.7.1 Review of discontinuous reception timer -- 4.3.7.2 Whether to reuse discontinuous reception timer for bandwidth part fallback timer? -- 4.3.8 Bandwidth part inactivity timer design -- 4.3.8.1 Configuration of bwp-InactivityTimer -- 4.3.8.2 Condition to start/restart bwp-InactivityTimer -- 4.3.8.3 Condition to stop bwp-InactivityTimer -- 4.3.9 Timer-based uplink bandwidth part switching -- 4.3.10 Time-pattern-based bandwidth part switching -- 4.3.10.1 The principle of time-pattern-based bandwidth part switching -- 4.3.10.2 The competition between time-pattern-based bandwidth part switching and timer-based bandwidth part switching -- 4.3.10.3 The reason why time-pattern-based bandwidth part switching was not adopted -- 4.3.11 Automatic bandwidth part switching -- 4.3.11.1 Paired switching of DL bandwidth part and UL bandwidth part in TDD -- 4.3.11.2 DL BWP switching caused by random access -- 4.3.12 Bandwidth part switching delay -- 4.4 Bandwidth part in initial access -- 4.4.1 Introduction of initial DL bandwidth part -- 4.4.2 Introduction of initial UL bandwidth part -- 4.4.3 Initial DL bandwidth part configuration -- 4.4.4 Relationship between the initial DL bandwidth part and default DL bandwidth part -- 4.4.5 Initial bandwidth part in carrier aggregation -- 4.5 Impact of bandwidth part on other physical layer designs -- 4.5.1 Impact of bandwidth part switching delay -- 4.5.2 Bandwidth part-dedicated and bandwidth part-common parameter configuration -- 4.6 Summary -- References -- 5 5G flexible scheduling -- 5.1 Principle of flexible scheduling -- 5.1.1 Limitation of LTE system scheduling design -- 5.1.2 Scheduling flexibility in the frequency domain -- 5.1.2.1 Resource allocation based on bandwidth part 5.1.2.2 Increase granularity of frequency-domain resource allocation -- 5.1.2.3 Adopt more dynamic resource indication signaling -- 5.1.3 Scheduling flexibility in the time domain -- 5.1.3.1 Low-latency transmission -- 5.1.3.2 Multibeam transmission -- 5.1.3.3 Flexible multiplexing between channels -- 5.1.3.4 Effectively support unlicensed spectrum operation -- 5.2 5G resource allocation -- 5.2.1 Optimization of resource allocation types in the frequency domain -- 5.2.2 Granularity of resource allocation in the frequency domain -- 5.2.3 Frequency-domain resource indication during BWP switching -- 5.2.4 Determination of frequency-hopping resources in BWP -- 5.2.5 Introduction to symbol-level scheduling -- 5.2.6 Reference time for indication of starting symbol -- 5.2.7 Reference SCS for indication of K0 or K2 -- 5.2.8 Resource mapping type: type A and type B -- 5.2.9 Time-domain resource allocation -- 5.2.10 Multislot transmission -- 5.3 Code Block Group -- 5.3.1 Introduction of Code Block Group transmission -- 5.3.2 CBG construction -- 5.3.3 CBG retransmission -- 5.3.4 DL control signaling for CBG-based transmission -- 5.3.5 UL control signaling for CBG-based transmission -- 5.4 Design of NR PDCCH -- 5.4.1 Considerations of NR PDCCH design -- 5.4.1.1 Changing from cell-specific PDCCH resources to UE-specific PDCCH resources -- 5.4.1.2 PDCCH "floating" in the time domain -- 5.4.1.3 Reduced complexity of DCI detection -- 5.4.2 Control Resource Set -- 5.4.2.1 External structure of CORESET -- 5.4.2.2 Internal structure of CORESET -- 5.4.3 Search-space set -- 5.4.4 DCI design -- 5.4.4.1 The choice of two-stage DCI -- 5.4.4.2 Introduction of group-common DCI -- 5.5 Design of NR PUCCH -- 5.5.1 Introduction of short-PUCCH and long-PUCCH -- 5.5.2 Design of short-PUCCH -- 5.5.3 Design of long-PUCCH -- 5.5.4 PUCCH resource allocation 5.5.5 PUCCH colliding with other UL channels |
ctrlnum | (ZDB-30-PQE)EBC6791562 (ZDB-30-PAD)EBC6791562 (ZDB-89-EBL)EBL6791562 (OCoLC)1281138007 (DE-599)BVBBV048220990 |
dewey-full | 621.38456 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.38456 |
dewey-search | 621.38456 |
dewey-sort | 3621.38456 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11403nmm a2200577zc 4500</leader><controlfield tag="001">BV048220990</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323911191</subfield><subfield code="9">978-0-323-91119-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6791562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6791562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6791562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1281138007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048220990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.38456</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6560</subfield><subfield code="0">(DE-625)157572:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 620</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 745</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">5G NR and enhancements</subfield><subfield code="b">from R15 to R16</subfield><subfield code="c">edited by Jia Shen, Zhongda Du, Zhi Zhang, Ning Yang, Hai Tang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambrigde, MA, United States</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxv, 1041 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- 5G NR and Enhancements -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Overview -- 1.1 Introduction -- 1.2 Enhanced evolution of new radio over LTE -- 1.2.1 New radio supports a higher band range -- 1.2.2 New radio supports wide bandwidth -- 1.2.3 New radio supports more flexible frame structure -- 1.2.4 New radio supports flexible numerology -- 1.2.5 Low-latency enhancements of air interface by new radio -- 1.2.6 Enhancement of reference signals in new radio -- 1.2.7 Multiple input multiple output capability enhancement by new radio -- 1.2.8 Enhancement of terminal power saving by new radio -- 1.2.9 Mobility enhancement by new radio -- 1.2.10 Enhancement of quality of service guarantee by new radio -- 1.2.11 Enhancement of core network architecture evolution by new radio -- 1.3 New radio's choice of new technology -- 1.3.1 New radio's choice on new numerology -- 1.3.2 New radio's choice on new waveform -- 1.3.3 New radio's choice on new coding -- 1.3.4 New radio's choice on new multiple access -- 1.4 Maturity of 5G technology, devices, and equipment -- 1.4.1 The development and maturity of digital devices and chips have well supported the research and development needs of 5... -- 1.4.2 5G active large-scale antenna equipment can meet the engineering and commercial requirements -- 1.4.3 Millimeter wave technology-devices and equipment are becoming more and more mature -- 1.5 R16 enhancement technology -- 1.5.1 Multiple input multiple output enhancement -- 1.5.1.1 eType II codebook -- 1.5.1.2 Multitransmission and reception points enhancement -- 1.5.1.3 Multibeam transmission enhancement -- 1.5.1.4 Uplink full-power Tx -- 1.5.2 Ultrareliable and low latency communications enhancement-physical layer -- 1.5.3 Ultrareliable and low latency communications enhancement high layer</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.5.3.1 Supporting time-sensitive communication -- 1.5.3.2 Data replication and multiconnection enhancement -- 1.5.3.3 Intrauser priority/reuse enhancement -- 1.5.4 UE power-saving enhancement -- 1.5.5 Two-step RACH -- 1.5.6 Uplink band switching transmission -- 1.5.7 Mobility enhancement -- 1.5.7.1 Dual active protocol stack enhancement -- 1.5.7.2 Conditional handover -- 1.5.8 Multi-RAT dual connectivity enhancement -- 1.5.9 New radio-vehicle to everything -- 1.5.10 New radio-unlicensed -- 1.6 Summary -- References -- 2 Requirements and scenarios of 5G system -- 2.1 Current needs and requirements in the 5G era -- 2.1.1 Requirements of high data rate -- 2.1.1.1 Enhanced multimedia service -- 2.1.1.2 Immersive interactive multimedia services -- 2.1.1.3 Hotspot services -- 2.1.2 Requirements from vertical industries -- 2.1.2.1 Low-latency communication -- 2.1.2.2 Reliable communication -- 2.1.2.3 Internet of Things communication -- 2.1.2.4 High-speed communication -- 2.1.2.5 High-precision positioning communication -- 2.2 Typical scenarios -- 2.2.1 Enhanced mobile broadband -- 2.2.2 Ultrareliable and low latency communications -- 2.2.3 Massive machine type communications -- 2.3 Key indicators of 5G systems -- 2.4 Summary -- References -- 3 5G system architecture -- 3.1 5G system architecture -- 3.1.1 5G system architecture requirements -- 3.1.2 5G system architecture and functional entities -- 3.1.2.1 Loose coupling and service-oriented network element functions -- 3.1.2.2 Open and secure network interface -- 3.1.2.3 Unified network function management -- 3.1.2.4 Enable continuous integration/continuous deployment time to market microservices -- 3.1.3 5G end-to-end architecture and protocol stack based on 3rd Generation Partnership Project access -- 3.1.3.1 End-to-end protocol stack of 5G control plane based on 3rd Generation Partnership Project access</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1.3.2 End-to-end protocol stack of 5G User Plane based on 3rd Generation Partnership Project access -- 3.1.4 5G end-to-end architecture and protocol stack based on non-3rd Generation Partnership Project access -- 3.1.5 5G system identifiers -- 3.2 The 5G RAN architecture and deployment options -- 3.2.1 Description of EN-DC and SA arechitecture -- 3.3 Summary -- References -- Further reading -- 4 Bandwidth part -- 4.1 Basic concept of bandwidth part -- 4.1.1 Motivation from resource allocations with multiple subcarrier spacings -- 4.1.2 Motivations from UE capability and power saving -- 4.1.3 Basic bandwidth part concept -- 4.1.4 Use cases of bandwidth part -- 4.1.5 What if bandwidth part contains synchronization signal/physical broadcast channel block? -- 4.1.6 Number of simultaneously active bandwidth parts -- 4.1.7 Relation between bandwidth part and carrier aggregation -- 4.2 Bandwidth part configuration -- 4.2.1 Introduction of common RB -- 4.2.2 Granularity of common RB -- 4.2.3 Reference point-point A -- 4.2.4 The starting point of common RB-RB 0 -- 4.2.5 Indication method of carrier starting point -- 4.2.6 Bandwidth part indication method -- 4.2.7 Summary of the basic bandwidth part configuration method -- 4.2.8 Number of configurable bandwidth parts -- 4.2.9 Bandwidth part configuration in the TDD system -- 4.3 Bandwidth part switching -- 4.3.1 Dynamic switching versus semistatic switching -- 4.3.2 Introduction of bandwidth part activation method based on DCI -- 4.3.3 DCI design for triggering bandwidth part switching-DCI format -- 4.3.4 DCI design for triggering bandwidth part switching-"explicitly trigger" versus "implicitly trigger" -- 4.3.5 DCI design for triggering bandwidth part switching-bandwidth part indicator -- 4.3.6 Introduction of timer-based bandwidth part fallback</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.7 Whether to reuse discontinuous reception timer to implement bandwidth part fallback? -- 4.3.7.1 Review of discontinuous reception timer -- 4.3.7.2 Whether to reuse discontinuous reception timer for bandwidth part fallback timer? -- 4.3.8 Bandwidth part inactivity timer design -- 4.3.8.1 Configuration of bwp-InactivityTimer -- 4.3.8.2 Condition to start/restart bwp-InactivityTimer -- 4.3.8.3 Condition to stop bwp-InactivityTimer -- 4.3.9 Timer-based uplink bandwidth part switching -- 4.3.10 Time-pattern-based bandwidth part switching -- 4.3.10.1 The principle of time-pattern-based bandwidth part switching -- 4.3.10.2 The competition between time-pattern-based bandwidth part switching and timer-based bandwidth part switching -- 4.3.10.3 The reason why time-pattern-based bandwidth part switching was not adopted -- 4.3.11 Automatic bandwidth part switching -- 4.3.11.1 Paired switching of DL bandwidth part and UL bandwidth part in TDD -- 4.3.11.2 DL BWP switching caused by random access -- 4.3.12 Bandwidth part switching delay -- 4.4 Bandwidth part in initial access -- 4.4.1 Introduction of initial DL bandwidth part -- 4.4.2 Introduction of initial UL bandwidth part -- 4.4.3 Initial DL bandwidth part configuration -- 4.4.4 Relationship between the initial DL bandwidth part and default DL bandwidth part -- 4.4.5 Initial bandwidth part in carrier aggregation -- 4.5 Impact of bandwidth part on other physical layer designs -- 4.5.1 Impact of bandwidth part switching delay -- 4.5.2 Bandwidth part-dedicated and bandwidth part-common parameter configuration -- 4.6 Summary -- References -- 5 5G flexible scheduling -- 5.1 Principle of flexible scheduling -- 5.1.1 Limitation of LTE system scheduling design -- 5.1.2 Scheduling flexibility in the frequency domain -- 5.1.2.1 Resource allocation based on bandwidth part</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1.2.2 Increase granularity of frequency-domain resource allocation -- 5.1.2.3 Adopt more dynamic resource indication signaling -- 5.1.3 Scheduling flexibility in the time domain -- 5.1.3.1 Low-latency transmission -- 5.1.3.2 Multibeam transmission -- 5.1.3.3 Flexible multiplexing between channels -- 5.1.3.4 Effectively support unlicensed spectrum operation -- 5.2 5G resource allocation -- 5.2.1 Optimization of resource allocation types in the frequency domain -- 5.2.2 Granularity of resource allocation in the frequency domain -- 5.2.3 Frequency-domain resource indication during BWP switching -- 5.2.4 Determination of frequency-hopping resources in BWP -- 5.2.5 Introduction to symbol-level scheduling -- 5.2.6 Reference time for indication of starting symbol -- 5.2.7 Reference SCS for indication of K0 or K2 -- 5.2.8 Resource mapping type: type A and type B -- 5.2.9 Time-domain resource allocation -- 5.2.10 Multislot transmission -- 5.3 Code Block Group -- 5.3.1 Introduction of Code Block Group transmission -- 5.3.2 CBG construction -- 5.3.3 CBG retransmission -- 5.3.4 DL control signaling for CBG-based transmission -- 5.3.5 UL control signaling for CBG-based transmission -- 5.4 Design of NR PDCCH -- 5.4.1 Considerations of NR PDCCH design -- 5.4.1.1 Changing from cell-specific PDCCH resources to UE-specific PDCCH resources -- 5.4.1.2 PDCCH "floating" in the time domain -- 5.4.1.3 Reduced complexity of DCI detection -- 5.4.2 Control Resource Set -- 5.4.2.1 External structure of CORESET -- 5.4.2.2 Internal structure of CORESET -- 5.4.3 Search-space set -- 5.4.4 DCI design -- 5.4.4.1 The choice of two-stage DCI -- 5.4.4.2 Introduction of group-common DCI -- 5.5 Design of NR PUCCH -- 5.5.1 Introduction of short-PUCCH and long-PUCCH -- 5.5.2 Design of short-PUCCH -- 5.5.3 Design of long-PUCCH -- 5.5.4 PUCCH resource allocation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5.5 PUCCH colliding with other UL channels</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mobilfunkstandard</subfield><subfield code="0">(DE-588)1172778450</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">5G</subfield><subfield code="0">(DE-588)1188755676</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">5G</subfield><subfield code="0">(DE-588)1188755676</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mobilfunkstandard</subfield><subfield code="0">(DE-588)1172778450</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Jia</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1252686560</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Zhongda</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhi</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ning</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1252688644</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Hai</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1252688903</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Tang, Hai</subfield><subfield code="t">5G NR and Enhancements</subfield><subfield code="d">San Diego : Elsevier,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-323-91060-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033601729</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6791562</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048220990 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9780323911191 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601729 |
oclc_num | 1281138007 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxv, 1041 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Elsevier |
record_format | marc |
spelling | 5G NR and enhancements from R15 to R16 edited by Jia Shen, Zhongda Du, Zhi Zhang, Ning Yang, Hai Tang Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambrigde, MA, United States Elsevier 2022 © 2022 1 Online-Ressource (xxv, 1041 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Front Cover -- 5G NR and Enhancements -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Overview -- 1.1 Introduction -- 1.2 Enhanced evolution of new radio over LTE -- 1.2.1 New radio supports a higher band range -- 1.2.2 New radio supports wide bandwidth -- 1.2.3 New radio supports more flexible frame structure -- 1.2.4 New radio supports flexible numerology -- 1.2.5 Low-latency enhancements of air interface by new radio -- 1.2.6 Enhancement of reference signals in new radio -- 1.2.7 Multiple input multiple output capability enhancement by new radio -- 1.2.8 Enhancement of terminal power saving by new radio -- 1.2.9 Mobility enhancement by new radio -- 1.2.10 Enhancement of quality of service guarantee by new radio -- 1.2.11 Enhancement of core network architecture evolution by new radio -- 1.3 New radio's choice of new technology -- 1.3.1 New radio's choice on new numerology -- 1.3.2 New radio's choice on new waveform -- 1.3.3 New radio's choice on new coding -- 1.3.4 New radio's choice on new multiple access -- 1.4 Maturity of 5G technology, devices, and equipment -- 1.4.1 The development and maturity of digital devices and chips have well supported the research and development needs of 5... -- 1.4.2 5G active large-scale antenna equipment can meet the engineering and commercial requirements -- 1.4.3 Millimeter wave technology-devices and equipment are becoming more and more mature -- 1.5 R16 enhancement technology -- 1.5.1 Multiple input multiple output enhancement -- 1.5.1.1 eType II codebook -- 1.5.1.2 Multitransmission and reception points enhancement -- 1.5.1.3 Multibeam transmission enhancement -- 1.5.1.4 Uplink full-power Tx -- 1.5.2 Ultrareliable and low latency communications enhancement-physical layer -- 1.5.3 Ultrareliable and low latency communications enhancement high layer 1.5.3.1 Supporting time-sensitive communication -- 1.5.3.2 Data replication and multiconnection enhancement -- 1.5.3.3 Intrauser priority/reuse enhancement -- 1.5.4 UE power-saving enhancement -- 1.5.5 Two-step RACH -- 1.5.6 Uplink band switching transmission -- 1.5.7 Mobility enhancement -- 1.5.7.1 Dual active protocol stack enhancement -- 1.5.7.2 Conditional handover -- 1.5.8 Multi-RAT dual connectivity enhancement -- 1.5.9 New radio-vehicle to everything -- 1.5.10 New radio-unlicensed -- 1.6 Summary -- References -- 2 Requirements and scenarios of 5G system -- 2.1 Current needs and requirements in the 5G era -- 2.1.1 Requirements of high data rate -- 2.1.1.1 Enhanced multimedia service -- 2.1.1.2 Immersive interactive multimedia services -- 2.1.1.3 Hotspot services -- 2.1.2 Requirements from vertical industries -- 2.1.2.1 Low-latency communication -- 2.1.2.2 Reliable communication -- 2.1.2.3 Internet of Things communication -- 2.1.2.4 High-speed communication -- 2.1.2.5 High-precision positioning communication -- 2.2 Typical scenarios -- 2.2.1 Enhanced mobile broadband -- 2.2.2 Ultrareliable and low latency communications -- 2.2.3 Massive machine type communications -- 2.3 Key indicators of 5G systems -- 2.4 Summary -- References -- 3 5G system architecture -- 3.1 5G system architecture -- 3.1.1 5G system architecture requirements -- 3.1.2 5G system architecture and functional entities -- 3.1.2.1 Loose coupling and service-oriented network element functions -- 3.1.2.2 Open and secure network interface -- 3.1.2.3 Unified network function management -- 3.1.2.4 Enable continuous integration/continuous deployment time to market microservices -- 3.1.3 5G end-to-end architecture and protocol stack based on 3rd Generation Partnership Project access -- 3.1.3.1 End-to-end protocol stack of 5G control plane based on 3rd Generation Partnership Project access 3.1.3.2 End-to-end protocol stack of 5G User Plane based on 3rd Generation Partnership Project access -- 3.1.4 5G end-to-end architecture and protocol stack based on non-3rd Generation Partnership Project access -- 3.1.5 5G system identifiers -- 3.2 The 5G RAN architecture and deployment options -- 3.2.1 Description of EN-DC and SA arechitecture -- 3.3 Summary -- References -- Further reading -- 4 Bandwidth part -- 4.1 Basic concept of bandwidth part -- 4.1.1 Motivation from resource allocations with multiple subcarrier spacings -- 4.1.2 Motivations from UE capability and power saving -- 4.1.3 Basic bandwidth part concept -- 4.1.4 Use cases of bandwidth part -- 4.1.5 What if bandwidth part contains synchronization signal/physical broadcast channel block? -- 4.1.6 Number of simultaneously active bandwidth parts -- 4.1.7 Relation between bandwidth part and carrier aggregation -- 4.2 Bandwidth part configuration -- 4.2.1 Introduction of common RB -- 4.2.2 Granularity of common RB -- 4.2.3 Reference point-point A -- 4.2.4 The starting point of common RB-RB 0 -- 4.2.5 Indication method of carrier starting point -- 4.2.6 Bandwidth part indication method -- 4.2.7 Summary of the basic bandwidth part configuration method -- 4.2.8 Number of configurable bandwidth parts -- 4.2.9 Bandwidth part configuration in the TDD system -- 4.3 Bandwidth part switching -- 4.3.1 Dynamic switching versus semistatic switching -- 4.3.2 Introduction of bandwidth part activation method based on DCI -- 4.3.3 DCI design for triggering bandwidth part switching-DCI format -- 4.3.4 DCI design for triggering bandwidth part switching-"explicitly trigger" versus "implicitly trigger" -- 4.3.5 DCI design for triggering bandwidth part switching-bandwidth part indicator -- 4.3.6 Introduction of timer-based bandwidth part fallback 4.3.7 Whether to reuse discontinuous reception timer to implement bandwidth part fallback? -- 4.3.7.1 Review of discontinuous reception timer -- 4.3.7.2 Whether to reuse discontinuous reception timer for bandwidth part fallback timer? -- 4.3.8 Bandwidth part inactivity timer design -- 4.3.8.1 Configuration of bwp-InactivityTimer -- 4.3.8.2 Condition to start/restart bwp-InactivityTimer -- 4.3.8.3 Condition to stop bwp-InactivityTimer -- 4.3.9 Timer-based uplink bandwidth part switching -- 4.3.10 Time-pattern-based bandwidth part switching -- 4.3.10.1 The principle of time-pattern-based bandwidth part switching -- 4.3.10.2 The competition between time-pattern-based bandwidth part switching and timer-based bandwidth part switching -- 4.3.10.3 The reason why time-pattern-based bandwidth part switching was not adopted -- 4.3.11 Automatic bandwidth part switching -- 4.3.11.1 Paired switching of DL bandwidth part and UL bandwidth part in TDD -- 4.3.11.2 DL BWP switching caused by random access -- 4.3.12 Bandwidth part switching delay -- 4.4 Bandwidth part in initial access -- 4.4.1 Introduction of initial DL bandwidth part -- 4.4.2 Introduction of initial UL bandwidth part -- 4.4.3 Initial DL bandwidth part configuration -- 4.4.4 Relationship between the initial DL bandwidth part and default DL bandwidth part -- 4.4.5 Initial bandwidth part in carrier aggregation -- 4.5 Impact of bandwidth part on other physical layer designs -- 4.5.1 Impact of bandwidth part switching delay -- 4.5.2 Bandwidth part-dedicated and bandwidth part-common parameter configuration -- 4.6 Summary -- References -- 5 5G flexible scheduling -- 5.1 Principle of flexible scheduling -- 5.1.1 Limitation of LTE system scheduling design -- 5.1.2 Scheduling flexibility in the frequency domain -- 5.1.2.1 Resource allocation based on bandwidth part 5.1.2.2 Increase granularity of frequency-domain resource allocation -- 5.1.2.3 Adopt more dynamic resource indication signaling -- 5.1.3 Scheduling flexibility in the time domain -- 5.1.3.1 Low-latency transmission -- 5.1.3.2 Multibeam transmission -- 5.1.3.3 Flexible multiplexing between channels -- 5.1.3.4 Effectively support unlicensed spectrum operation -- 5.2 5G resource allocation -- 5.2.1 Optimization of resource allocation types in the frequency domain -- 5.2.2 Granularity of resource allocation in the frequency domain -- 5.2.3 Frequency-domain resource indication during BWP switching -- 5.2.4 Determination of frequency-hopping resources in BWP -- 5.2.5 Introduction to symbol-level scheduling -- 5.2.6 Reference time for indication of starting symbol -- 5.2.7 Reference SCS for indication of K0 or K2 -- 5.2.8 Resource mapping type: type A and type B -- 5.2.9 Time-domain resource allocation -- 5.2.10 Multislot transmission -- 5.3 Code Block Group -- 5.3.1 Introduction of Code Block Group transmission -- 5.3.2 CBG construction -- 5.3.3 CBG retransmission -- 5.3.4 DL control signaling for CBG-based transmission -- 5.3.5 UL control signaling for CBG-based transmission -- 5.4 Design of NR PDCCH -- 5.4.1 Considerations of NR PDCCH design -- 5.4.1.1 Changing from cell-specific PDCCH resources to UE-specific PDCCH resources -- 5.4.1.2 PDCCH "floating" in the time domain -- 5.4.1.3 Reduced complexity of DCI detection -- 5.4.2 Control Resource Set -- 5.4.2.1 External structure of CORESET -- 5.4.2.2 Internal structure of CORESET -- 5.4.3 Search-space set -- 5.4.4 DCI design -- 5.4.4.1 The choice of two-stage DCI -- 5.4.4.2 Introduction of group-common DCI -- 5.5 Design of NR PUCCH -- 5.5.1 Introduction of short-PUCCH and long-PUCCH -- 5.5.2 Design of short-PUCCH -- 5.5.3 Design of long-PUCCH -- 5.5.4 PUCCH resource allocation 5.5.5 PUCCH colliding with other UL channels Mobilfunkstandard (DE-588)1172778450 gnd rswk-swf 5G (DE-588)1188755676 gnd rswk-swf 5G (DE-588)1188755676 s Mobilfunkstandard (DE-588)1172778450 s DE-604 Shen, Jia ca. 20./21. Jh. (DE-588)1252686560 edt Du, Zhongda edt Zhang, Zhi edt Yang, Ning ca. 20./21. Jh. (DE-588)1252688644 edt Tang, Hai ca. 20./21. Jh. (DE-588)1252688903 edt Erscheint auch als Tang, Hai 5G NR and Enhancements San Diego : Elsevier,c2021 Druck-Ausgabe 978-0-323-91060-6 |
spellingShingle | 5G NR and enhancements from R15 to R16 Front Cover -- 5G NR and Enhancements -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Overview -- 1.1 Introduction -- 1.2 Enhanced evolution of new radio over LTE -- 1.2.1 New radio supports a higher band range -- 1.2.2 New radio supports wide bandwidth -- 1.2.3 New radio supports more flexible frame structure -- 1.2.4 New radio supports flexible numerology -- 1.2.5 Low-latency enhancements of air interface by new radio -- 1.2.6 Enhancement of reference signals in new radio -- 1.2.7 Multiple input multiple output capability enhancement by new radio -- 1.2.8 Enhancement of terminal power saving by new radio -- 1.2.9 Mobility enhancement by new radio -- 1.2.10 Enhancement of quality of service guarantee by new radio -- 1.2.11 Enhancement of core network architecture evolution by new radio -- 1.3 New radio's choice of new technology -- 1.3.1 New radio's choice on new numerology -- 1.3.2 New radio's choice on new waveform -- 1.3.3 New radio's choice on new coding -- 1.3.4 New radio's choice on new multiple access -- 1.4 Maturity of 5G technology, devices, and equipment -- 1.4.1 The development and maturity of digital devices and chips have well supported the research and development needs of 5... -- 1.4.2 5G active large-scale antenna equipment can meet the engineering and commercial requirements -- 1.4.3 Millimeter wave technology-devices and equipment are becoming more and more mature -- 1.5 R16 enhancement technology -- 1.5.1 Multiple input multiple output enhancement -- 1.5.1.1 eType II codebook -- 1.5.1.2 Multitransmission and reception points enhancement -- 1.5.1.3 Multibeam transmission enhancement -- 1.5.1.4 Uplink full-power Tx -- 1.5.2 Ultrareliable and low latency communications enhancement-physical layer -- 1.5.3 Ultrareliable and low latency communications enhancement high layer 1.5.3.1 Supporting time-sensitive communication -- 1.5.3.2 Data replication and multiconnection enhancement -- 1.5.3.3 Intrauser priority/reuse enhancement -- 1.5.4 UE power-saving enhancement -- 1.5.5 Two-step RACH -- 1.5.6 Uplink band switching transmission -- 1.5.7 Mobility enhancement -- 1.5.7.1 Dual active protocol stack enhancement -- 1.5.7.2 Conditional handover -- 1.5.8 Multi-RAT dual connectivity enhancement -- 1.5.9 New radio-vehicle to everything -- 1.5.10 New radio-unlicensed -- 1.6 Summary -- References -- 2 Requirements and scenarios of 5G system -- 2.1 Current needs and requirements in the 5G era -- 2.1.1 Requirements of high data rate -- 2.1.1.1 Enhanced multimedia service -- 2.1.1.2 Immersive interactive multimedia services -- 2.1.1.3 Hotspot services -- 2.1.2 Requirements from vertical industries -- 2.1.2.1 Low-latency communication -- 2.1.2.2 Reliable communication -- 2.1.2.3 Internet of Things communication -- 2.1.2.4 High-speed communication -- 2.1.2.5 High-precision positioning communication -- 2.2 Typical scenarios -- 2.2.1 Enhanced mobile broadband -- 2.2.2 Ultrareliable and low latency communications -- 2.2.3 Massive machine type communications -- 2.3 Key indicators of 5G systems -- 2.4 Summary -- References -- 3 5G system architecture -- 3.1 5G system architecture -- 3.1.1 5G system architecture requirements -- 3.1.2 5G system architecture and functional entities -- 3.1.2.1 Loose coupling and service-oriented network element functions -- 3.1.2.2 Open and secure network interface -- 3.1.2.3 Unified network function management -- 3.1.2.4 Enable continuous integration/continuous deployment time to market microservices -- 3.1.3 5G end-to-end architecture and protocol stack based on 3rd Generation Partnership Project access -- 3.1.3.1 End-to-end protocol stack of 5G control plane based on 3rd Generation Partnership Project access 3.1.3.2 End-to-end protocol stack of 5G User Plane based on 3rd Generation Partnership Project access -- 3.1.4 5G end-to-end architecture and protocol stack based on non-3rd Generation Partnership Project access -- 3.1.5 5G system identifiers -- 3.2 The 5G RAN architecture and deployment options -- 3.2.1 Description of EN-DC and SA arechitecture -- 3.3 Summary -- References -- Further reading -- 4 Bandwidth part -- 4.1 Basic concept of bandwidth part -- 4.1.1 Motivation from resource allocations with multiple subcarrier spacings -- 4.1.2 Motivations from UE capability and power saving -- 4.1.3 Basic bandwidth part concept -- 4.1.4 Use cases of bandwidth part -- 4.1.5 What if bandwidth part contains synchronization signal/physical broadcast channel block? -- 4.1.6 Number of simultaneously active bandwidth parts -- 4.1.7 Relation between bandwidth part and carrier aggregation -- 4.2 Bandwidth part configuration -- 4.2.1 Introduction of common RB -- 4.2.2 Granularity of common RB -- 4.2.3 Reference point-point A -- 4.2.4 The starting point of common RB-RB 0 -- 4.2.5 Indication method of carrier starting point -- 4.2.6 Bandwidth part indication method -- 4.2.7 Summary of the basic bandwidth part configuration method -- 4.2.8 Number of configurable bandwidth parts -- 4.2.9 Bandwidth part configuration in the TDD system -- 4.3 Bandwidth part switching -- 4.3.1 Dynamic switching versus semistatic switching -- 4.3.2 Introduction of bandwidth part activation method based on DCI -- 4.3.3 DCI design for triggering bandwidth part switching-DCI format -- 4.3.4 DCI design for triggering bandwidth part switching-"explicitly trigger" versus "implicitly trigger" -- 4.3.5 DCI design for triggering bandwidth part switching-bandwidth part indicator -- 4.3.6 Introduction of timer-based bandwidth part fallback 4.3.7 Whether to reuse discontinuous reception timer to implement bandwidth part fallback? -- 4.3.7.1 Review of discontinuous reception timer -- 4.3.7.2 Whether to reuse discontinuous reception timer for bandwidth part fallback timer? -- 4.3.8 Bandwidth part inactivity timer design -- 4.3.8.1 Configuration of bwp-InactivityTimer -- 4.3.8.2 Condition to start/restart bwp-InactivityTimer -- 4.3.8.3 Condition to stop bwp-InactivityTimer -- 4.3.9 Timer-based uplink bandwidth part switching -- 4.3.10 Time-pattern-based bandwidth part switching -- 4.3.10.1 The principle of time-pattern-based bandwidth part switching -- 4.3.10.2 The competition between time-pattern-based bandwidth part switching and timer-based bandwidth part switching -- 4.3.10.3 The reason why time-pattern-based bandwidth part switching was not adopted -- 4.3.11 Automatic bandwidth part switching -- 4.3.11.1 Paired switching of DL bandwidth part and UL bandwidth part in TDD -- 4.3.11.2 DL BWP switching caused by random access -- 4.3.12 Bandwidth part switching delay -- 4.4 Bandwidth part in initial access -- 4.4.1 Introduction of initial DL bandwidth part -- 4.4.2 Introduction of initial UL bandwidth part -- 4.4.3 Initial DL bandwidth part configuration -- 4.4.4 Relationship between the initial DL bandwidth part and default DL bandwidth part -- 4.4.5 Initial bandwidth part in carrier aggregation -- 4.5 Impact of bandwidth part on other physical layer designs -- 4.5.1 Impact of bandwidth part switching delay -- 4.5.2 Bandwidth part-dedicated and bandwidth part-common parameter configuration -- 4.6 Summary -- References -- 5 5G flexible scheduling -- 5.1 Principle of flexible scheduling -- 5.1.1 Limitation of LTE system scheduling design -- 5.1.2 Scheduling flexibility in the frequency domain -- 5.1.2.1 Resource allocation based on bandwidth part 5.1.2.2 Increase granularity of frequency-domain resource allocation -- 5.1.2.3 Adopt more dynamic resource indication signaling -- 5.1.3 Scheduling flexibility in the time domain -- 5.1.3.1 Low-latency transmission -- 5.1.3.2 Multibeam transmission -- 5.1.3.3 Flexible multiplexing between channels -- 5.1.3.4 Effectively support unlicensed spectrum operation -- 5.2 5G resource allocation -- 5.2.1 Optimization of resource allocation types in the frequency domain -- 5.2.2 Granularity of resource allocation in the frequency domain -- 5.2.3 Frequency-domain resource indication during BWP switching -- 5.2.4 Determination of frequency-hopping resources in BWP -- 5.2.5 Introduction to symbol-level scheduling -- 5.2.6 Reference time for indication of starting symbol -- 5.2.7 Reference SCS for indication of K0 or K2 -- 5.2.8 Resource mapping type: type A and type B -- 5.2.9 Time-domain resource allocation -- 5.2.10 Multislot transmission -- 5.3 Code Block Group -- 5.3.1 Introduction of Code Block Group transmission -- 5.3.2 CBG construction -- 5.3.3 CBG retransmission -- 5.3.4 DL control signaling for CBG-based transmission -- 5.3.5 UL control signaling for CBG-based transmission -- 5.4 Design of NR PDCCH -- 5.4.1 Considerations of NR PDCCH design -- 5.4.1.1 Changing from cell-specific PDCCH resources to UE-specific PDCCH resources -- 5.4.1.2 PDCCH "floating" in the time domain -- 5.4.1.3 Reduced complexity of DCI detection -- 5.4.2 Control Resource Set -- 5.4.2.1 External structure of CORESET -- 5.4.2.2 Internal structure of CORESET -- 5.4.3 Search-space set -- 5.4.4 DCI design -- 5.4.4.1 The choice of two-stage DCI -- 5.4.4.2 Introduction of group-common DCI -- 5.5 Design of NR PUCCH -- 5.5.1 Introduction of short-PUCCH and long-PUCCH -- 5.5.2 Design of short-PUCCH -- 5.5.3 Design of long-PUCCH -- 5.5.4 PUCCH resource allocation 5.5.5 PUCCH colliding with other UL channels Mobilfunkstandard (DE-588)1172778450 gnd 5G (DE-588)1188755676 gnd |
subject_GND | (DE-588)1172778450 (DE-588)1188755676 |
title | 5G NR and enhancements from R15 to R16 |
title_auth | 5G NR and enhancements from R15 to R16 |
title_exact_search | 5G NR and enhancements from R15 to R16 |
title_exact_search_txtP | 5G NR and enhancements from R15 to R16 |
title_full | 5G NR and enhancements from R15 to R16 edited by Jia Shen, Zhongda Du, Zhi Zhang, Ning Yang, Hai Tang |
title_fullStr | 5G NR and enhancements from R15 to R16 edited by Jia Shen, Zhongda Du, Zhi Zhang, Ning Yang, Hai Tang |
title_full_unstemmed | 5G NR and enhancements from R15 to R16 edited by Jia Shen, Zhongda Du, Zhi Zhang, Ning Yang, Hai Tang |
title_short | 5G NR and enhancements |
title_sort | 5g nr and enhancements from r15 to r16 |
title_sub | from R15 to R16 |
topic | Mobilfunkstandard (DE-588)1172778450 gnd 5G (DE-588)1188755676 gnd |
topic_facet | Mobilfunkstandard 5G |
work_keys_str_mv | AT shenjia 5gnrandenhancementsfromr15tor16 AT duzhongda 5gnrandenhancementsfromr15tor16 AT zhangzhi 5gnrandenhancementsfromr15tor16 AT yangning 5gnrandenhancementsfromr15tor16 AT tanghai 5gnrandenhancementsfromr15tor16 |