Spectroscopic techniques for polymer characterization: methods, instrumentation, applications
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Weinheim, Germany
Wiley-VCH
2022
|
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxiii, 462 Seiten) Illustrationen, Diagramme |
ISBN: | 9783527830305 9783527830312 9783527830329 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048220973 | ||
003 | DE-604 | ||
005 | 20240220 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783527830305 |q PDF |9 978-3-527-83030-5 | ||
020 | |a 9783527830312 |q OBOOK |9 978-3-527-83031-2 | ||
020 | |a 9783527830329 |q EPUB |9 978-3-527-83032-9 | ||
024 | 7 | |a 10.1002/9783527830312 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6789345 | ||
035 | |a (ZDB-30-PAD)EBC6789345 | ||
035 | |a (ZDB-89-EBL)EBL6789345 | ||
035 | |a (OCoLC)1281963578 | ||
035 | |a (DE-599)BVBBV048220973 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 |a DE-634 | ||
082 | 0 | |a 547.7046 | |
084 | |a VE 8000 |0 (DE-625)147145:253 |2 rvk | ||
084 | |a VG 8900 |0 (DE-625)147231:253 |2 rvk | ||
084 | |a CHE 720 |2 stub | ||
245 | 1 | 0 | |a Spectroscopic techniques for polymer characterization |b methods, instrumentation, applications |c edited by Yukihiro Ozaki and Harumi Sato |
264 | 1 | |a Weinheim, Germany |b Wiley-VCH |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xxiii, 462 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- General Introduction -- Part I Recent Progress on Spectroscopic Techniques -- Chapter 1 Polymer Spectroscopy - Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy -- 1.1 Introduction to Polymer Spectroscopy -- 1.1.1 Outline of Polymer Spectroscopy -- 1.1.2 Brief History of Polymer Spectroscopy -- 1.2 Overview of Molecular Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy in Polymer Research -- 1.2.1 IR and Raman Spectroscopy Analyses -- 1.2.2 FIR/Terahertz and Low‐Frequency Raman Spectroscopy -- 1.2.3 Near‐Infrared (NIR) Spectroscopy -- 1.2.4 SERS and TERS Spectroscopy -- 1.2.5 FUV Spectroscopy -- 1.3 Specific Examples of Molecular Spectroscopy Studies of Polymers -- 1.3.1 Infrared, Raman, and NIR Spectroscopic Evidence for the Coexistence of Hydrogen Bond Types in Poly(Acrylic Acid) -- 1.3.2 Low‐Frequency Vibrational Modes of Nylon‐6 Studied by Using IR and Raman Spectroscopies and Density Functional Theory Calculations -- 1.3.3 NIR Spectra of Linear Low‐Density Polyethylene and Their Chemometrics Analysis -- 1.3.4 Study of the Crystallization Behavior of Asymmetric PLLA/PDLA Blend by IR and Raman Spectroscopy and Raman Imaging -- 1.3.5 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles -- 1.3.6 Tip‐Enhanced Raman Scattering Spectroscopy Study of Local Interactions at the Interface of Styrene-Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites -- 1.4 Perspectives for Polymer Spectroscopy -- References -- Chapter 2 FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Polymers and Multicomponent Polymer Systems -- 2.1 Investigation of Polymers Using FTIR Spectroscopy and Spectroscopic Imaging | |
505 | 8 | |a 2.1.1 Investigation of Miscibility in Polymer Blends -- 2.1.2 Investigation of Intermolecular Interactions -- 2.1.2.1 Investigation of Partially Miscible PMMA-PEG Blends Using Two‐Dimensional Disrelation Mapping -- 2.1.3 Investigation of Crystallization in Polymers -- 2.1.3.1 Investigation of Solvent‐Induced Crystallization in Polymers -- 2.1.3.2 Investigation of the Crystallization Process of PHB, PLLA, and Their Blends -- 2.2 Investigation of Polymers Subjected to High‐Pressure or Supercritical CO2 Using FTIR Spectroscopy and FTIR Spectroscopic Imaging -- 2.2.1 Morphology of Polymeric Materials Under High‐Pressure or Supercritical CO2 -- 2.2.2 Investigation of Interaction in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.2.1 Investigation of the Effect of High‐Pressure CO2 on the H‐Bonding in PEG-PVP Blends -- 2.2.2.2 Investigation of the Mechanism of Interaction Between CO2 and Polymers Through the Thermodynamic Parameters Produced from In Situ ATR-FTIR Spectroscopy -- 2.2.3 Investigation of Crystallization in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.4 The Investigation of Structural Changes and Crystallization Kinetics of Polymers Exposed to High‐Pressure CO2 Through In Situ High‐Pressure FTIR and FT‐Raman Spectroscopy -- 2.2.5 Investigation of Swelling and CO2 Sorption into the Polymers Under High‐Pressure or Supercritical CO2 -- 2.3 Conclusion -- References -- Chapter 3 Interfaces in Polymer Nanocomposites Characterized by Spectroscopic Techniques -- 3.1 Introduction -- 3.2 Types of Interactions at the Interface -- 3.3 Characterization of the Interfaces -- 3.3.1 Fluorescence Spectroscopy -- 3.3.2 Solid‐State NMR Spectroscopy -- 3.3.3 Vibrational Spectroscopy -- 3.3.3.1 Infrared Spectroscopy -- 3.3.3.2 Raman Spectroscopy -- 3.4 Conclusions -- References | |
505 | 8 | |a Chapter 4 Far‐Infrared/Terahertz and Low‐Frequency Raman Spectroscopies in Polymers -- 4.1 Introduction -- 4.2 Intermolecular Hydrogen Bonds in the Low‐Frequency Region of PHB by QCCs -- 4.3 Several Types of Intermolecular Hydrogen Bonds in PCL -- 4.4 Stress‐Induced Crystal Transition of Polybutylene Succinate (PBS) -- 4.5 The Differences in Intermolecular Hydrogen Bonding Between PET and PBT -- 4.6 THz Imaging of Polymer Film -- 4.7 Conclusions -- References -- Chapter 5 Near‐Infrared Spectroscopy and Imaging of Polymers -- 5.1 Introduction to NIR Spectroscopy -- 5.1.1 Principles of NIR Spectroscopy -- 5.1.2 Characteristics and Advantages of NIR Spectroscopy -- 5.1.3 Analysis of NIR Spectra -- 5.2 Applications to Polymer Science and Engineering of NIR Spectroscopy -- 5.2.1 Polarized NIR Spectroscopy Studies of Molecular Orientation of Polymers -- 5.2.2 Isothermal Crystallization Kinetics of Poly(3‐hydroxybutyrate) -- 5.2.3 Crystallization of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) During Melt Extrusion Promoted by Residual Crystals -- 5.2.3.1 Outline of Online NIR Analysis and Online NIR Monitoring of the Residual Crystal Amount at the Extruder Outlet Nozzle -- 5.2.3.2 Amount of Residual Crystals at the Extruder Outlet -- 5.2.3.3 Crystallization of Extruded Strands -- 5.2.3.4 Analysis of Extruded Strand Crystallization Using the Avrami Equation -- 5.3 NIR Imaging for Polymer Sciences -- 5.3.1 Introduction -- 5.3.2 Theory of NIR Imaging -- 5.3.2.1 Acquisition of Hypercube -- 5.3.2.2 Data Transfer and Mapping -- 5.3.2.3 Feature of NIR Imaging Devices -- 5.3.3 Applications of NIR Imaging -- 5.3.3.1 Monitoring of Crystal Evolution Combined with Chemometrics -- 5.3.3.2 Quality Evaluation Potential for Wide Area -- 5.3.3.3 Diffusion Process Monitoring -- 5.3.3.4 Degradable Process Monitoring of Biodegradable Polymer | |
505 | 8 | |a 5.3.3.5 Rapid Evaluation of the Water Content in PLA Pellets -- 5.3.3.6 Nondestructive Detection of Degraded Polylactic Acid Moldings -- References -- Chapter 6 Far Ultraviolet Spectroscopy for Polymers -- 6.1 Introduction -- 6.2 Measurement of ATR-FUV Spectra of Polymer -- 6.3 ATR-FUV Spectra of Nylons -- 6.4 ATR-FUV Spectra of Poly(3‐hydroxybutyrate) (PHB) and Its Graphene Nanocomposites -- 6.5 ATR-FUV Study of Poly(ethylene glycol) (PEG) and Its Complex with Lithium Ion (Li+) -- 6.6 Summary -- References -- Chapter 7 Synchrotron‐Based UV Resonance Raman Spectroscopy for Polymer Characterization -- 7.1 Basic Principles of Raman and UV Resonance Raman Spectroscopy -- 7.1.1 Molecular Vibrations and Raman Effect -- 7.1.2 Resonance Raman (RR) Scattering -- 7.1.3 Fundamental Applications of UV Resonance Raman Spectroscopy -- 7.2 Synchrotron‐Based UV Resonance Raman: Basic Principles and Instrumentation -- 7.2.1 Synchrotron‐Based UVRR Setup on IUVS@Elettra -- 7.3 SR‐UVRR Characterization of Biopolymers -- 7.4 UV Resonance Raman Studies on Polymeric Hydrogels -- 7.4.1 Water Confinement in Polysaccharide Hydrogels -- 7.4.2 Phase Transition in Thermo‐Sensitive Polysaccharide Hydrogels -- 7.4.3 Water and Polymer Dynamics in pH‐Responsive Polysaccharide Hydrogels -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Sum Frequency Generation Spectroscopy for Understanding the Polymer Dynamics at Buried Interfaces -- 8.1 Introduction -- 8.2 Principle -- 8.3 Examples -- 8.3.1 Nonsolvent Interface -- 8.3.1.1 Polystyrene -- 8.3.2 Solid Interface -- 8.3.2.1 Polystyrene -- 8.3.2.2 Polyisoprene -- 8.3.2.3 Poly(styrene‐co‐butadiene) Rubber -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9 Application of Two‐Dimensional Correlation Spectroscopy (2D‐COS) in Polymer Studies -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Background | |
505 | 8 | |a 9.2.2 Properties of 2D‐COS -- 9.3 Applications of 2D‐COS in Polymer Studies -- 9.3.1 Applications of Conventional 2D‐COS -- 9.3.1.1 Biodegradable Polymers -- 9.3.1.2 Thermo‐Responsive Polymers -- 9.3.2 2D Hetero‐Spectral Correlation Analysis -- 9.3.3 Two‐Dimensional (2D) Gradient‐Mapping Method -- 9.3.4 Chemometric Techniques Combined with 2D‐COS -- 9.3.5 Smooth Factor Analysis -- 9.3.6 Projection 2D‐COS -- 9.3.7 2D‐COS for Hyperspectral Imaging -- 9.4 Conclusions -- References -- Chapter 10 Molecular Dynamics in Polymer Science -- 10.1 Introduction -- 10.2 Historical and Theoretical Background -- 10.3 Applications -- 10.3.1 Vibrational Spectra of Hydrogen‐Bonded Polymers -- 10.3.2 Studies of Interactions Between Polymers and Water -- 10.3.3 Mechanical Properties of Polymers -- 10.3.4 Interphase Interactions -- 10.4 Summary and Perspectives -- Acknowledgment -- References -- Chapter 11 Spectroscopic Analysis of Structural Transformations Associated with Poly(lactic acid) -- 11.1 Introduction -- 11.2 Spectroscopic Tools -- 11.2.1 Vibrational Features of PLA Crystals -- 11.2.2 Analysis of Disordered PLA Chains -- 11.2.3 Description of Anisotropic PLA - Polarized Spectra -- 11.3 Simulation Studies for Both Ordered and Disordered Structures -- 11.4 Analysis of Conformational Changes in PLA During Deformation -- 11.5 Aging Behavior in PLA -- 11.6 Conclusion -- Acknowledgment -- References -- Part II Topical Polymers Studied by Spectroscopy -- Chapter 12 Probing Molecular Events in Self‐Healable Polymers -- 12.1 Introduction -- 12.2 Microphase Separation -- 12.3 Entropically Driven Self‐Healing -- 12.3.1 Free Radical and Cationic Recombination -- 12.3.2 Van der Waals Interactions -- 12.3.3 Chemical Sensing of Damage-Repair Cycle -- Acknowledgments -- References -- Chapter 13 Recent Application of Vibrational Spectroscopy to Conjugated Conducting Polymers | |
505 | 8 | |a 13.1 Introduction | |
650 | 0 | 7 | |a Polymere |0 (DE-588)4046699-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektroskopie |0 (DE-588)4056138-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 0 | 1 | |a Spektroskopie |0 (DE-588)4056138-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ozaki, Yukihiro |d 1949- |0 (DE-588)1181830729 |4 edt | |
700 | 1 | |a Sato, Harumi |0 (DE-588)1246906856 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-527-34833-6 |
912 | |a ZDB-30-PQE |a ZDB-35-WIC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033601712 | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9783527830312 |l BTU01 |p ZDB-35-WIC |q BTU_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6789345 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002000584704 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Ozaki, Yukihiro 1949- Sato, Harumi |
author2_role | edt edt |
author2_variant | y o yo h s hs |
author_GND | (DE-588)1181830729 (DE-588)1246906856 |
author_facet | Ozaki, Yukihiro 1949- Sato, Harumi |
building | Verbundindex |
bvnumber | BV048220973 |
classification_rvk | VE 8000 VG 8900 |
classification_tum | CHE 720 |
collection | ZDB-30-PQE ZDB-35-WIC |
contents | Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- General Introduction -- Part I Recent Progress on Spectroscopic Techniques -- Chapter 1 Polymer Spectroscopy - Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy -- 1.1 Introduction to Polymer Spectroscopy -- 1.1.1 Outline of Polymer Spectroscopy -- 1.1.2 Brief History of Polymer Spectroscopy -- 1.2 Overview of Molecular Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy in Polymer Research -- 1.2.1 IR and Raman Spectroscopy Analyses -- 1.2.2 FIR/Terahertz and Low‐Frequency Raman Spectroscopy -- 1.2.3 Near‐Infrared (NIR) Spectroscopy -- 1.2.4 SERS and TERS Spectroscopy -- 1.2.5 FUV Spectroscopy -- 1.3 Specific Examples of Molecular Spectroscopy Studies of Polymers -- 1.3.1 Infrared, Raman, and NIR Spectroscopic Evidence for the Coexistence of Hydrogen Bond Types in Poly(Acrylic Acid) -- 1.3.2 Low‐Frequency Vibrational Modes of Nylon‐6 Studied by Using IR and Raman Spectroscopies and Density Functional Theory Calculations -- 1.3.3 NIR Spectra of Linear Low‐Density Polyethylene and Their Chemometrics Analysis -- 1.3.4 Study of the Crystallization Behavior of Asymmetric PLLA/PDLA Blend by IR and Raman Spectroscopy and Raman Imaging -- 1.3.5 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles -- 1.3.6 Tip‐Enhanced Raman Scattering Spectroscopy Study of Local Interactions at the Interface of Styrene-Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites -- 1.4 Perspectives for Polymer Spectroscopy -- References -- Chapter 2 FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Polymers and Multicomponent Polymer Systems -- 2.1 Investigation of Polymers Using FTIR Spectroscopy and Spectroscopic Imaging 2.1.1 Investigation of Miscibility in Polymer Blends -- 2.1.2 Investigation of Intermolecular Interactions -- 2.1.2.1 Investigation of Partially Miscible PMMA-PEG Blends Using Two‐Dimensional Disrelation Mapping -- 2.1.3 Investigation of Crystallization in Polymers -- 2.1.3.1 Investigation of Solvent‐Induced Crystallization in Polymers -- 2.1.3.2 Investigation of the Crystallization Process of PHB, PLLA, and Their Blends -- 2.2 Investigation of Polymers Subjected to High‐Pressure or Supercritical CO2 Using FTIR Spectroscopy and FTIR Spectroscopic Imaging -- 2.2.1 Morphology of Polymeric Materials Under High‐Pressure or Supercritical CO2 -- 2.2.2 Investigation of Interaction in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.2.1 Investigation of the Effect of High‐Pressure CO2 on the H‐Bonding in PEG-PVP Blends -- 2.2.2.2 Investigation of the Mechanism of Interaction Between CO2 and Polymers Through the Thermodynamic Parameters Produced from In Situ ATR-FTIR Spectroscopy -- 2.2.3 Investigation of Crystallization in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.4 The Investigation of Structural Changes and Crystallization Kinetics of Polymers Exposed to High‐Pressure CO2 Through In Situ High‐Pressure FTIR and FT‐Raman Spectroscopy -- 2.2.5 Investigation of Swelling and CO2 Sorption into the Polymers Under High‐Pressure or Supercritical CO2 -- 2.3 Conclusion -- References -- Chapter 3 Interfaces in Polymer Nanocomposites Characterized by Spectroscopic Techniques -- 3.1 Introduction -- 3.2 Types of Interactions at the Interface -- 3.3 Characterization of the Interfaces -- 3.3.1 Fluorescence Spectroscopy -- 3.3.2 Solid‐State NMR Spectroscopy -- 3.3.3 Vibrational Spectroscopy -- 3.3.3.1 Infrared Spectroscopy -- 3.3.3.2 Raman Spectroscopy -- 3.4 Conclusions -- References Chapter 4 Far‐Infrared/Terahertz and Low‐Frequency Raman Spectroscopies in Polymers -- 4.1 Introduction -- 4.2 Intermolecular Hydrogen Bonds in the Low‐Frequency Region of PHB by QCCs -- 4.3 Several Types of Intermolecular Hydrogen Bonds in PCL -- 4.4 Stress‐Induced Crystal Transition of Polybutylene Succinate (PBS) -- 4.5 The Differences in Intermolecular Hydrogen Bonding Between PET and PBT -- 4.6 THz Imaging of Polymer Film -- 4.7 Conclusions -- References -- Chapter 5 Near‐Infrared Spectroscopy and Imaging of Polymers -- 5.1 Introduction to NIR Spectroscopy -- 5.1.1 Principles of NIR Spectroscopy -- 5.1.2 Characteristics and Advantages of NIR Spectroscopy -- 5.1.3 Analysis of NIR Spectra -- 5.2 Applications to Polymer Science and Engineering of NIR Spectroscopy -- 5.2.1 Polarized NIR Spectroscopy Studies of Molecular Orientation of Polymers -- 5.2.2 Isothermal Crystallization Kinetics of Poly(3‐hydroxybutyrate) -- 5.2.3 Crystallization of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) During Melt Extrusion Promoted by Residual Crystals -- 5.2.3.1 Outline of Online NIR Analysis and Online NIR Monitoring of the Residual Crystal Amount at the Extruder Outlet Nozzle -- 5.2.3.2 Amount of Residual Crystals at the Extruder Outlet -- 5.2.3.3 Crystallization of Extruded Strands -- 5.2.3.4 Analysis of Extruded Strand Crystallization Using the Avrami Equation -- 5.3 NIR Imaging for Polymer Sciences -- 5.3.1 Introduction -- 5.3.2 Theory of NIR Imaging -- 5.3.2.1 Acquisition of Hypercube -- 5.3.2.2 Data Transfer and Mapping -- 5.3.2.3 Feature of NIR Imaging Devices -- 5.3.3 Applications of NIR Imaging -- 5.3.3.1 Monitoring of Crystal Evolution Combined with Chemometrics -- 5.3.3.2 Quality Evaluation Potential for Wide Area -- 5.3.3.3 Diffusion Process Monitoring -- 5.3.3.4 Degradable Process Monitoring of Biodegradable Polymer 5.3.3.5 Rapid Evaluation of the Water Content in PLA Pellets -- 5.3.3.6 Nondestructive Detection of Degraded Polylactic Acid Moldings -- References -- Chapter 6 Far Ultraviolet Spectroscopy for Polymers -- 6.1 Introduction -- 6.2 Measurement of ATR-FUV Spectra of Polymer -- 6.3 ATR-FUV Spectra of Nylons -- 6.4 ATR-FUV Spectra of Poly(3‐hydroxybutyrate) (PHB) and Its Graphene Nanocomposites -- 6.5 ATR-FUV Study of Poly(ethylene glycol) (PEG) and Its Complex with Lithium Ion (Li+) -- 6.6 Summary -- References -- Chapter 7 Synchrotron‐Based UV Resonance Raman Spectroscopy for Polymer Characterization -- 7.1 Basic Principles of Raman and UV Resonance Raman Spectroscopy -- 7.1.1 Molecular Vibrations and Raman Effect -- 7.1.2 Resonance Raman (RR) Scattering -- 7.1.3 Fundamental Applications of UV Resonance Raman Spectroscopy -- 7.2 Synchrotron‐Based UV Resonance Raman: Basic Principles and Instrumentation -- 7.2.1 Synchrotron‐Based UVRR Setup on IUVS@Elettra -- 7.3 SR‐UVRR Characterization of Biopolymers -- 7.4 UV Resonance Raman Studies on Polymeric Hydrogels -- 7.4.1 Water Confinement in Polysaccharide Hydrogels -- 7.4.2 Phase Transition in Thermo‐Sensitive Polysaccharide Hydrogels -- 7.4.3 Water and Polymer Dynamics in pH‐Responsive Polysaccharide Hydrogels -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Sum Frequency Generation Spectroscopy for Understanding the Polymer Dynamics at Buried Interfaces -- 8.1 Introduction -- 8.2 Principle -- 8.3 Examples -- 8.3.1 Nonsolvent Interface -- 8.3.1.1 Polystyrene -- 8.3.2 Solid Interface -- 8.3.2.1 Polystyrene -- 8.3.2.2 Polyisoprene -- 8.3.2.3 Poly(styrene‐co‐butadiene) Rubber -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9 Application of Two‐Dimensional Correlation Spectroscopy (2D‐COS) in Polymer Studies -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Background 9.2.2 Properties of 2D‐COS -- 9.3 Applications of 2D‐COS in Polymer Studies -- 9.3.1 Applications of Conventional 2D‐COS -- 9.3.1.1 Biodegradable Polymers -- 9.3.1.2 Thermo‐Responsive Polymers -- 9.3.2 2D Hetero‐Spectral Correlation Analysis -- 9.3.3 Two‐Dimensional (2D) Gradient‐Mapping Method -- 9.3.4 Chemometric Techniques Combined with 2D‐COS -- 9.3.5 Smooth Factor Analysis -- 9.3.6 Projection 2D‐COS -- 9.3.7 2D‐COS for Hyperspectral Imaging -- 9.4 Conclusions -- References -- Chapter 10 Molecular Dynamics in Polymer Science -- 10.1 Introduction -- 10.2 Historical and Theoretical Background -- 10.3 Applications -- 10.3.1 Vibrational Spectra of Hydrogen‐Bonded Polymers -- 10.3.2 Studies of Interactions Between Polymers and Water -- 10.3.3 Mechanical Properties of Polymers -- 10.3.4 Interphase Interactions -- 10.4 Summary and Perspectives -- Acknowledgment -- References -- Chapter 11 Spectroscopic Analysis of Structural Transformations Associated with Poly(lactic acid) -- 11.1 Introduction -- 11.2 Spectroscopic Tools -- 11.2.1 Vibrational Features of PLA Crystals -- 11.2.2 Analysis of Disordered PLA Chains -- 11.2.3 Description of Anisotropic PLA - Polarized Spectra -- 11.3 Simulation Studies for Both Ordered and Disordered Structures -- 11.4 Analysis of Conformational Changes in PLA During Deformation -- 11.5 Aging Behavior in PLA -- 11.6 Conclusion -- Acknowledgment -- References -- Part II Topical Polymers Studied by Spectroscopy -- Chapter 12 Probing Molecular Events in Self‐Healable Polymers -- 12.1 Introduction -- 12.2 Microphase Separation -- 12.3 Entropically Driven Self‐Healing -- 12.3.1 Free Radical and Cationic Recombination -- 12.3.2 Van der Waals Interactions -- 12.3.3 Chemical Sensing of Damage-Repair Cycle -- Acknowledgments -- References -- Chapter 13 Recent Application of Vibrational Spectroscopy to Conjugated Conducting Polymers 13.1 Introduction |
ctrlnum | (ZDB-30-PQE)EBC6789345 (ZDB-30-PAD)EBC6789345 (ZDB-89-EBL)EBL6789345 (OCoLC)1281963578 (DE-599)BVBBV048220973 |
dewey-full | 547.7046 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.7046 |
dewey-search | 547.7046 |
dewey-sort | 3547.7046 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
discipline_str_mv | Chemie / Pharmazie Chemie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11649nmm a2200601zc 4500</leader><controlfield tag="001">BV048220973</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527830305</subfield><subfield code="q">PDF</subfield><subfield code="9">978-3-527-83030-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527830312</subfield><subfield code="q">OBOOK</subfield><subfield code="9">978-3-527-83031-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527830329</subfield><subfield code="q">EPUB</subfield><subfield code="9">978-3-527-83032-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9783527830312</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6789345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6789345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6789345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1281963578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048220973</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547.7046</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 8000</subfield><subfield code="0">(DE-625)147145:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 8900</subfield><subfield code="0">(DE-625)147231:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 720</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectroscopic techniques for polymer characterization</subfield><subfield code="b">methods, instrumentation, applications</subfield><subfield code="c">edited by Yukihiro Ozaki and Harumi Sato</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim, Germany</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 462 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- General Introduction -- Part I Recent Progress on Spectroscopic Techniques -- Chapter 1 Polymer Spectroscopy - Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy -- 1.1 Introduction to Polymer Spectroscopy -- 1.1.1 Outline of Polymer Spectroscopy -- 1.1.2 Brief History of Polymer Spectroscopy -- 1.2 Overview of Molecular Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy in Polymer Research -- 1.2.1 IR and Raman Spectroscopy Analyses -- 1.2.2 FIR/Terahertz and Low‐Frequency Raman Spectroscopy -- 1.2.3 Near‐Infrared (NIR) Spectroscopy -- 1.2.4 SERS and TERS Spectroscopy -- 1.2.5 FUV Spectroscopy -- 1.3 Specific Examples of Molecular Spectroscopy Studies of Polymers -- 1.3.1 Infrared, Raman, and NIR Spectroscopic Evidence for the Coexistence of Hydrogen Bond Types in Poly(Acrylic Acid) -- 1.3.2 Low‐Frequency Vibrational Modes of Nylon‐6 Studied by Using IR and Raman Spectroscopies and Density Functional Theory Calculations -- 1.3.3 NIR Spectra of Linear Low‐Density Polyethylene and Their Chemometrics Analysis -- 1.3.4 Study of the Crystallization Behavior of Asymmetric PLLA/PDLA Blend by IR and Raman Spectroscopy and Raman Imaging -- 1.3.5 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles -- 1.3.6 Tip‐Enhanced Raman Scattering Spectroscopy Study of Local Interactions at the Interface of Styrene-Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites -- 1.4 Perspectives for Polymer Spectroscopy -- References -- Chapter 2 FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Polymers and Multicomponent Polymer Systems -- 2.1 Investigation of Polymers Using FTIR Spectroscopy and Spectroscopic Imaging</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.1 Investigation of Miscibility in Polymer Blends -- 2.1.2 Investigation of Intermolecular Interactions -- 2.1.2.1 Investigation of Partially Miscible PMMA-PEG Blends Using Two‐Dimensional Disrelation Mapping -- 2.1.3 Investigation of Crystallization in Polymers -- 2.1.3.1 Investigation of Solvent‐Induced Crystallization in Polymers -- 2.1.3.2 Investigation of the Crystallization Process of PHB, PLLA, and Their Blends -- 2.2 Investigation of Polymers Subjected to High‐Pressure or Supercritical CO2 Using FTIR Spectroscopy and FTIR Spectroscopic Imaging -- 2.2.1 Morphology of Polymeric Materials Under High‐Pressure or Supercritical CO2 -- 2.2.2 Investigation of Interaction in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.2.1 Investigation of the Effect of High‐Pressure CO2 on the H‐Bonding in PEG-PVP Blends -- 2.2.2.2 Investigation of the Mechanism of Interaction Between CO2 and Polymers Through the Thermodynamic Parameters Produced from In Situ ATR-FTIR Spectroscopy -- 2.2.3 Investigation of Crystallization in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.4 The Investigation of Structural Changes and Crystallization Kinetics of Polymers Exposed to High‐Pressure CO2 Through In Situ High‐Pressure FTIR and FT‐Raman Spectroscopy -- 2.2.5 Investigation of Swelling and CO2 Sorption into the Polymers Under High‐Pressure or Supercritical CO2 -- 2.3 Conclusion -- References -- Chapter 3 Interfaces in Polymer Nanocomposites Characterized by Spectroscopic Techniques -- 3.1 Introduction -- 3.2 Types of Interactions at the Interface -- 3.3 Characterization of the Interfaces -- 3.3.1 Fluorescence Spectroscopy -- 3.3.2 Solid‐State NMR Spectroscopy -- 3.3.3 Vibrational Spectroscopy -- 3.3.3.1 Infrared Spectroscopy -- 3.3.3.2 Raman Spectroscopy -- 3.4 Conclusions -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4 Far‐Infrared/Terahertz and Low‐Frequency Raman Spectroscopies in Polymers -- 4.1 Introduction -- 4.2 Intermolecular Hydrogen Bonds in the Low‐Frequency Region of PHB by QCCs -- 4.3 Several Types of Intermolecular Hydrogen Bonds in PCL -- 4.4 Stress‐Induced Crystal Transition of Polybutylene Succinate (PBS) -- 4.5 The Differences in Intermolecular Hydrogen Bonding Between PET and PBT -- 4.6 THz Imaging of Polymer Film -- 4.7 Conclusions -- References -- Chapter 5 Near‐Infrared Spectroscopy and Imaging of Polymers -- 5.1 Introduction to NIR Spectroscopy -- 5.1.1 Principles of NIR Spectroscopy -- 5.1.2 Characteristics and Advantages of NIR Spectroscopy -- 5.1.3 Analysis of NIR Spectra -- 5.2 Applications to Polymer Science and Engineering of NIR Spectroscopy -- 5.2.1 Polarized NIR Spectroscopy Studies of Molecular Orientation of Polymers -- 5.2.2 Isothermal Crystallization Kinetics of Poly(3‐hydroxybutyrate) -- 5.2.3 Crystallization of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) During Melt Extrusion Promoted by Residual Crystals -- 5.2.3.1 Outline of Online NIR Analysis and Online NIR Monitoring of the Residual Crystal Amount at the Extruder Outlet Nozzle -- 5.2.3.2 Amount of Residual Crystals at the Extruder Outlet -- 5.2.3.3 Crystallization of Extruded Strands -- 5.2.3.4 Analysis of Extruded Strand Crystallization Using the Avrami Equation -- 5.3 NIR Imaging for Polymer Sciences -- 5.3.1 Introduction -- 5.3.2 Theory of NIR Imaging -- 5.3.2.1 Acquisition of Hypercube -- 5.3.2.2 Data Transfer and Mapping -- 5.3.2.3 Feature of NIR Imaging Devices -- 5.3.3 Applications of NIR Imaging -- 5.3.3.1 Monitoring of Crystal Evolution Combined with Chemometrics -- 5.3.3.2 Quality Evaluation Potential for Wide Area -- 5.3.3.3 Diffusion Process Monitoring -- 5.3.3.4 Degradable Process Monitoring of Biodegradable Polymer</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.3.5 Rapid Evaluation of the Water Content in PLA Pellets -- 5.3.3.6 Nondestructive Detection of Degraded Polylactic Acid Moldings -- References -- Chapter 6 Far Ultraviolet Spectroscopy for Polymers -- 6.1 Introduction -- 6.2 Measurement of ATR-FUV Spectra of Polymer -- 6.3 ATR-FUV Spectra of Nylons -- 6.4 ATR-FUV Spectra of Poly(3‐hydroxybutyrate) (PHB) and Its Graphene Nanocomposites -- 6.5 ATR-FUV Study of Poly(ethylene glycol) (PEG) and Its Complex with Lithium Ion (Li+) -- 6.6 Summary -- References -- Chapter 7 Synchrotron‐Based UV Resonance Raman Spectroscopy for Polymer Characterization -- 7.1 Basic Principles of Raman and UV Resonance Raman Spectroscopy -- 7.1.1 Molecular Vibrations and Raman Effect -- 7.1.2 Resonance Raman (RR) Scattering -- 7.1.3 Fundamental Applications of UV Resonance Raman Spectroscopy -- 7.2 Synchrotron‐Based UV Resonance Raman: Basic Principles and Instrumentation -- 7.2.1 Synchrotron‐Based UVRR Setup on IUVS@Elettra -- 7.3 SR‐UVRR Characterization of Biopolymers -- 7.4 UV Resonance Raman Studies on Polymeric Hydrogels -- 7.4.1 Water Confinement in Polysaccharide Hydrogels -- 7.4.2 Phase Transition in Thermo‐Sensitive Polysaccharide Hydrogels -- 7.4.3 Water and Polymer Dynamics in pH‐Responsive Polysaccharide Hydrogels -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Sum Frequency Generation Spectroscopy for Understanding the Polymer Dynamics at Buried Interfaces -- 8.1 Introduction -- 8.2 Principle -- 8.3 Examples -- 8.3.1 Nonsolvent Interface -- 8.3.1.1 Polystyrene -- 8.3.2 Solid Interface -- 8.3.2.1 Polystyrene -- 8.3.2.2 Polyisoprene -- 8.3.2.3 Poly(styrene‐co‐butadiene) Rubber -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9 Application of Two‐Dimensional Correlation Spectroscopy (2D‐COS) in Polymer Studies -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Background</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.2.2 Properties of 2D‐COS -- 9.3 Applications of 2D‐COS in Polymer Studies -- 9.3.1 Applications of Conventional 2D‐COS -- 9.3.1.1 Biodegradable Polymers -- 9.3.1.2 Thermo‐Responsive Polymers -- 9.3.2 2D Hetero‐Spectral Correlation Analysis -- 9.3.3 Two‐Dimensional (2D) Gradient‐Mapping Method -- 9.3.4 Chemometric Techniques Combined with 2D‐COS -- 9.3.5 Smooth Factor Analysis -- 9.3.6 Projection 2D‐COS -- 9.3.7 2D‐COS for Hyperspectral Imaging -- 9.4 Conclusions -- References -- Chapter 10 Molecular Dynamics in Polymer Science -- 10.1 Introduction -- 10.2 Historical and Theoretical Background -- 10.3 Applications -- 10.3.1 Vibrational Spectra of Hydrogen‐Bonded Polymers -- 10.3.2 Studies of Interactions Between Polymers and Water -- 10.3.3 Mechanical Properties of Polymers -- 10.3.4 Interphase Interactions -- 10.4 Summary and Perspectives -- Acknowledgment -- References -- Chapter 11 Spectroscopic Analysis of Structural Transformations Associated with Poly(lactic acid) -- 11.1 Introduction -- 11.2 Spectroscopic Tools -- 11.2.1 Vibrational Features of PLA Crystals -- 11.2.2 Analysis of Disordered PLA Chains -- 11.2.3 Description of Anisotropic PLA - Polarized Spectra -- 11.3 Simulation Studies for Both Ordered and Disordered Structures -- 11.4 Analysis of Conformational Changes in PLA During Deformation -- 11.5 Aging Behavior in PLA -- 11.6 Conclusion -- Acknowledgment -- References -- Part II Topical Polymers Studied by Spectroscopy -- Chapter 12 Probing Molecular Events in Self‐Healable Polymers -- 12.1 Introduction -- 12.2 Microphase Separation -- 12.3 Entropically Driven Self‐Healing -- 12.3.1 Free Radical and Cationic Recombination -- 12.3.2 Van der Waals Interactions -- 12.3.3 Chemical Sensing of Damage-Repair Cycle -- Acknowledgments -- References -- Chapter 13 Recent Application of Vibrational Spectroscopy to Conjugated Conducting Polymers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.1 Introduction</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektroskopie</subfield><subfield code="0">(DE-588)4056138-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektroskopie</subfield><subfield code="0">(DE-588)4056138-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ozaki, Yukihiro</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)1181830729</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sato, Harumi</subfield><subfield code="0">(DE-588)1246906856</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-527-34833-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033601712</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9783527830312</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">BTU_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6789345</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048220973 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9783527830305 9783527830312 9783527830329 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601712 |
oclc_num | 1281963578 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-83 DE-634 |
physical | 1 Online-Ressource (xxiii, 462 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-35-WIC ZDB-35-WIC BTU_Kauf ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Spectroscopic techniques for polymer characterization methods, instrumentation, applications edited by Yukihiro Ozaki and Harumi Sato Weinheim, Germany Wiley-VCH 2022 © 2022 1 Online-Ressource (xxiii, 462 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- General Introduction -- Part I Recent Progress on Spectroscopic Techniques -- Chapter 1 Polymer Spectroscopy - Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy -- 1.1 Introduction to Polymer Spectroscopy -- 1.1.1 Outline of Polymer Spectroscopy -- 1.1.2 Brief History of Polymer Spectroscopy -- 1.2 Overview of Molecular Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy in Polymer Research -- 1.2.1 IR and Raman Spectroscopy Analyses -- 1.2.2 FIR/Terahertz and Low‐Frequency Raman Spectroscopy -- 1.2.3 Near‐Infrared (NIR) Spectroscopy -- 1.2.4 SERS and TERS Spectroscopy -- 1.2.5 FUV Spectroscopy -- 1.3 Specific Examples of Molecular Spectroscopy Studies of Polymers -- 1.3.1 Infrared, Raman, and NIR Spectroscopic Evidence for the Coexistence of Hydrogen Bond Types in Poly(Acrylic Acid) -- 1.3.2 Low‐Frequency Vibrational Modes of Nylon‐6 Studied by Using IR and Raman Spectroscopies and Density Functional Theory Calculations -- 1.3.3 NIR Spectra of Linear Low‐Density Polyethylene and Their Chemometrics Analysis -- 1.3.4 Study of the Crystallization Behavior of Asymmetric PLLA/PDLA Blend by IR and Raman Spectroscopy and Raman Imaging -- 1.3.5 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles -- 1.3.6 Tip‐Enhanced Raman Scattering Spectroscopy Study of Local Interactions at the Interface of Styrene-Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites -- 1.4 Perspectives for Polymer Spectroscopy -- References -- Chapter 2 FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Polymers and Multicomponent Polymer Systems -- 2.1 Investigation of Polymers Using FTIR Spectroscopy and Spectroscopic Imaging 2.1.1 Investigation of Miscibility in Polymer Blends -- 2.1.2 Investigation of Intermolecular Interactions -- 2.1.2.1 Investigation of Partially Miscible PMMA-PEG Blends Using Two‐Dimensional Disrelation Mapping -- 2.1.3 Investigation of Crystallization in Polymers -- 2.1.3.1 Investigation of Solvent‐Induced Crystallization in Polymers -- 2.1.3.2 Investigation of the Crystallization Process of PHB, PLLA, and Their Blends -- 2.2 Investigation of Polymers Subjected to High‐Pressure or Supercritical CO2 Using FTIR Spectroscopy and FTIR Spectroscopic Imaging -- 2.2.1 Morphology of Polymeric Materials Under High‐Pressure or Supercritical CO2 -- 2.2.2 Investigation of Interaction in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.2.1 Investigation of the Effect of High‐Pressure CO2 on the H‐Bonding in PEG-PVP Blends -- 2.2.2.2 Investigation of the Mechanism of Interaction Between CO2 and Polymers Through the Thermodynamic Parameters Produced from In Situ ATR-FTIR Spectroscopy -- 2.2.3 Investigation of Crystallization in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.4 The Investigation of Structural Changes and Crystallization Kinetics of Polymers Exposed to High‐Pressure CO2 Through In Situ High‐Pressure FTIR and FT‐Raman Spectroscopy -- 2.2.5 Investigation of Swelling and CO2 Sorption into the Polymers Under High‐Pressure or Supercritical CO2 -- 2.3 Conclusion -- References -- Chapter 3 Interfaces in Polymer Nanocomposites Characterized by Spectroscopic Techniques -- 3.1 Introduction -- 3.2 Types of Interactions at the Interface -- 3.3 Characterization of the Interfaces -- 3.3.1 Fluorescence Spectroscopy -- 3.3.2 Solid‐State NMR Spectroscopy -- 3.3.3 Vibrational Spectroscopy -- 3.3.3.1 Infrared Spectroscopy -- 3.3.3.2 Raman Spectroscopy -- 3.4 Conclusions -- References Chapter 4 Far‐Infrared/Terahertz and Low‐Frequency Raman Spectroscopies in Polymers -- 4.1 Introduction -- 4.2 Intermolecular Hydrogen Bonds in the Low‐Frequency Region of PHB by QCCs -- 4.3 Several Types of Intermolecular Hydrogen Bonds in PCL -- 4.4 Stress‐Induced Crystal Transition of Polybutylene Succinate (PBS) -- 4.5 The Differences in Intermolecular Hydrogen Bonding Between PET and PBT -- 4.6 THz Imaging of Polymer Film -- 4.7 Conclusions -- References -- Chapter 5 Near‐Infrared Spectroscopy and Imaging of Polymers -- 5.1 Introduction to NIR Spectroscopy -- 5.1.1 Principles of NIR Spectroscopy -- 5.1.2 Characteristics and Advantages of NIR Spectroscopy -- 5.1.3 Analysis of NIR Spectra -- 5.2 Applications to Polymer Science and Engineering of NIR Spectroscopy -- 5.2.1 Polarized NIR Spectroscopy Studies of Molecular Orientation of Polymers -- 5.2.2 Isothermal Crystallization Kinetics of Poly(3‐hydroxybutyrate) -- 5.2.3 Crystallization of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) During Melt Extrusion Promoted by Residual Crystals -- 5.2.3.1 Outline of Online NIR Analysis and Online NIR Monitoring of the Residual Crystal Amount at the Extruder Outlet Nozzle -- 5.2.3.2 Amount of Residual Crystals at the Extruder Outlet -- 5.2.3.3 Crystallization of Extruded Strands -- 5.2.3.4 Analysis of Extruded Strand Crystallization Using the Avrami Equation -- 5.3 NIR Imaging for Polymer Sciences -- 5.3.1 Introduction -- 5.3.2 Theory of NIR Imaging -- 5.3.2.1 Acquisition of Hypercube -- 5.3.2.2 Data Transfer and Mapping -- 5.3.2.3 Feature of NIR Imaging Devices -- 5.3.3 Applications of NIR Imaging -- 5.3.3.1 Monitoring of Crystal Evolution Combined with Chemometrics -- 5.3.3.2 Quality Evaluation Potential for Wide Area -- 5.3.3.3 Diffusion Process Monitoring -- 5.3.3.4 Degradable Process Monitoring of Biodegradable Polymer 5.3.3.5 Rapid Evaluation of the Water Content in PLA Pellets -- 5.3.3.6 Nondestructive Detection of Degraded Polylactic Acid Moldings -- References -- Chapter 6 Far Ultraviolet Spectroscopy for Polymers -- 6.1 Introduction -- 6.2 Measurement of ATR-FUV Spectra of Polymer -- 6.3 ATR-FUV Spectra of Nylons -- 6.4 ATR-FUV Spectra of Poly(3‐hydroxybutyrate) (PHB) and Its Graphene Nanocomposites -- 6.5 ATR-FUV Study of Poly(ethylene glycol) (PEG) and Its Complex with Lithium Ion (Li+) -- 6.6 Summary -- References -- Chapter 7 Synchrotron‐Based UV Resonance Raman Spectroscopy for Polymer Characterization -- 7.1 Basic Principles of Raman and UV Resonance Raman Spectroscopy -- 7.1.1 Molecular Vibrations and Raman Effect -- 7.1.2 Resonance Raman (RR) Scattering -- 7.1.3 Fundamental Applications of UV Resonance Raman Spectroscopy -- 7.2 Synchrotron‐Based UV Resonance Raman: Basic Principles and Instrumentation -- 7.2.1 Synchrotron‐Based UVRR Setup on IUVS@Elettra -- 7.3 SR‐UVRR Characterization of Biopolymers -- 7.4 UV Resonance Raman Studies on Polymeric Hydrogels -- 7.4.1 Water Confinement in Polysaccharide Hydrogels -- 7.4.2 Phase Transition in Thermo‐Sensitive Polysaccharide Hydrogels -- 7.4.3 Water and Polymer Dynamics in pH‐Responsive Polysaccharide Hydrogels -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Sum Frequency Generation Spectroscopy for Understanding the Polymer Dynamics at Buried Interfaces -- 8.1 Introduction -- 8.2 Principle -- 8.3 Examples -- 8.3.1 Nonsolvent Interface -- 8.3.1.1 Polystyrene -- 8.3.2 Solid Interface -- 8.3.2.1 Polystyrene -- 8.3.2.2 Polyisoprene -- 8.3.2.3 Poly(styrene‐co‐butadiene) Rubber -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9 Application of Two‐Dimensional Correlation Spectroscopy (2D‐COS) in Polymer Studies -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Background 9.2.2 Properties of 2D‐COS -- 9.3 Applications of 2D‐COS in Polymer Studies -- 9.3.1 Applications of Conventional 2D‐COS -- 9.3.1.1 Biodegradable Polymers -- 9.3.1.2 Thermo‐Responsive Polymers -- 9.3.2 2D Hetero‐Spectral Correlation Analysis -- 9.3.3 Two‐Dimensional (2D) Gradient‐Mapping Method -- 9.3.4 Chemometric Techniques Combined with 2D‐COS -- 9.3.5 Smooth Factor Analysis -- 9.3.6 Projection 2D‐COS -- 9.3.7 2D‐COS for Hyperspectral Imaging -- 9.4 Conclusions -- References -- Chapter 10 Molecular Dynamics in Polymer Science -- 10.1 Introduction -- 10.2 Historical and Theoretical Background -- 10.3 Applications -- 10.3.1 Vibrational Spectra of Hydrogen‐Bonded Polymers -- 10.3.2 Studies of Interactions Between Polymers and Water -- 10.3.3 Mechanical Properties of Polymers -- 10.3.4 Interphase Interactions -- 10.4 Summary and Perspectives -- Acknowledgment -- References -- Chapter 11 Spectroscopic Analysis of Structural Transformations Associated with Poly(lactic acid) -- 11.1 Introduction -- 11.2 Spectroscopic Tools -- 11.2.1 Vibrational Features of PLA Crystals -- 11.2.2 Analysis of Disordered PLA Chains -- 11.2.3 Description of Anisotropic PLA - Polarized Spectra -- 11.3 Simulation Studies for Both Ordered and Disordered Structures -- 11.4 Analysis of Conformational Changes in PLA During Deformation -- 11.5 Aging Behavior in PLA -- 11.6 Conclusion -- Acknowledgment -- References -- Part II Topical Polymers Studied by Spectroscopy -- Chapter 12 Probing Molecular Events in Self‐Healable Polymers -- 12.1 Introduction -- 12.2 Microphase Separation -- 12.3 Entropically Driven Self‐Healing -- 12.3.1 Free Radical and Cationic Recombination -- 12.3.2 Van der Waals Interactions -- 12.3.3 Chemical Sensing of Damage-Repair Cycle -- Acknowledgments -- References -- Chapter 13 Recent Application of Vibrational Spectroscopy to Conjugated Conducting Polymers 13.1 Introduction Polymere (DE-588)4046699-1 gnd rswk-swf Spektroskopie (DE-588)4056138-0 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Polymere (DE-588)4046699-1 s Spektroskopie (DE-588)4056138-0 s DE-604 Ozaki, Yukihiro 1949- (DE-588)1181830729 edt Sato, Harumi (DE-588)1246906856 edt Erscheint auch als Druck-Ausgabe 978-3-527-34833-6 |
spellingShingle | Spectroscopic techniques for polymer characterization methods, instrumentation, applications Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- General Introduction -- Part I Recent Progress on Spectroscopic Techniques -- Chapter 1 Polymer Spectroscopy - Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy -- 1.1 Introduction to Polymer Spectroscopy -- 1.1.1 Outline of Polymer Spectroscopy -- 1.1.2 Brief History of Polymer Spectroscopy -- 1.2 Overview of Molecular Spectroscopy from the Far‐Ultraviolet to Far‐Infrared/Terahertz and Raman Spectroscopy in Polymer Research -- 1.2.1 IR and Raman Spectroscopy Analyses -- 1.2.2 FIR/Terahertz and Low‐Frequency Raman Spectroscopy -- 1.2.3 Near‐Infrared (NIR) Spectroscopy -- 1.2.4 SERS and TERS Spectroscopy -- 1.2.5 FUV Spectroscopy -- 1.3 Specific Examples of Molecular Spectroscopy Studies of Polymers -- 1.3.1 Infrared, Raman, and NIR Spectroscopic Evidence for the Coexistence of Hydrogen Bond Types in Poly(Acrylic Acid) -- 1.3.2 Low‐Frequency Vibrational Modes of Nylon‐6 Studied by Using IR and Raman Spectroscopies and Density Functional Theory Calculations -- 1.3.3 NIR Spectra of Linear Low‐Density Polyethylene and Their Chemometrics Analysis -- 1.3.4 Study of the Crystallization Behavior of Asymmetric PLLA/PDLA Blend by IR and Raman Spectroscopy and Raman Imaging -- 1.3.5 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles -- 1.3.6 Tip‐Enhanced Raman Scattering Spectroscopy Study of Local Interactions at the Interface of Styrene-Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites -- 1.4 Perspectives for Polymer Spectroscopy -- References -- Chapter 2 FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Polymers and Multicomponent Polymer Systems -- 2.1 Investigation of Polymers Using FTIR Spectroscopy and Spectroscopic Imaging 2.1.1 Investigation of Miscibility in Polymer Blends -- 2.1.2 Investigation of Intermolecular Interactions -- 2.1.2.1 Investigation of Partially Miscible PMMA-PEG Blends Using Two‐Dimensional Disrelation Mapping -- 2.1.3 Investigation of Crystallization in Polymers -- 2.1.3.1 Investigation of Solvent‐Induced Crystallization in Polymers -- 2.1.3.2 Investigation of the Crystallization Process of PHB, PLLA, and Their Blends -- 2.2 Investigation of Polymers Subjected to High‐Pressure or Supercritical CO2 Using FTIR Spectroscopy and FTIR Spectroscopic Imaging -- 2.2.1 Morphology of Polymeric Materials Under High‐Pressure or Supercritical CO2 -- 2.2.2 Investigation of Interaction in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.2.1 Investigation of the Effect of High‐Pressure CO2 on the H‐Bonding in PEG-PVP Blends -- 2.2.2.2 Investigation of the Mechanism of Interaction Between CO2 and Polymers Through the Thermodynamic Parameters Produced from In Situ ATR-FTIR Spectroscopy -- 2.2.3 Investigation of Crystallization in Polymers Under High‐Pressure or Supercritical CO2 -- 2.2.4 The Investigation of Structural Changes and Crystallization Kinetics of Polymers Exposed to High‐Pressure CO2 Through In Situ High‐Pressure FTIR and FT‐Raman Spectroscopy -- 2.2.5 Investigation of Swelling and CO2 Sorption into the Polymers Under High‐Pressure or Supercritical CO2 -- 2.3 Conclusion -- References -- Chapter 3 Interfaces in Polymer Nanocomposites Characterized by Spectroscopic Techniques -- 3.1 Introduction -- 3.2 Types of Interactions at the Interface -- 3.3 Characterization of the Interfaces -- 3.3.1 Fluorescence Spectroscopy -- 3.3.2 Solid‐State NMR Spectroscopy -- 3.3.3 Vibrational Spectroscopy -- 3.3.3.1 Infrared Spectroscopy -- 3.3.3.2 Raman Spectroscopy -- 3.4 Conclusions -- References Chapter 4 Far‐Infrared/Terahertz and Low‐Frequency Raman Spectroscopies in Polymers -- 4.1 Introduction -- 4.2 Intermolecular Hydrogen Bonds in the Low‐Frequency Region of PHB by QCCs -- 4.3 Several Types of Intermolecular Hydrogen Bonds in PCL -- 4.4 Stress‐Induced Crystal Transition of Polybutylene Succinate (PBS) -- 4.5 The Differences in Intermolecular Hydrogen Bonding Between PET and PBT -- 4.6 THz Imaging of Polymer Film -- 4.7 Conclusions -- References -- Chapter 5 Near‐Infrared Spectroscopy and Imaging of Polymers -- 5.1 Introduction to NIR Spectroscopy -- 5.1.1 Principles of NIR Spectroscopy -- 5.1.2 Characteristics and Advantages of NIR Spectroscopy -- 5.1.3 Analysis of NIR Spectra -- 5.2 Applications to Polymer Science and Engineering of NIR Spectroscopy -- 5.2.1 Polarized NIR Spectroscopy Studies of Molecular Orientation of Polymers -- 5.2.2 Isothermal Crystallization Kinetics of Poly(3‐hydroxybutyrate) -- 5.2.3 Crystallization of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) During Melt Extrusion Promoted by Residual Crystals -- 5.2.3.1 Outline of Online NIR Analysis and Online NIR Monitoring of the Residual Crystal Amount at the Extruder Outlet Nozzle -- 5.2.3.2 Amount of Residual Crystals at the Extruder Outlet -- 5.2.3.3 Crystallization of Extruded Strands -- 5.2.3.4 Analysis of Extruded Strand Crystallization Using the Avrami Equation -- 5.3 NIR Imaging for Polymer Sciences -- 5.3.1 Introduction -- 5.3.2 Theory of NIR Imaging -- 5.3.2.1 Acquisition of Hypercube -- 5.3.2.2 Data Transfer and Mapping -- 5.3.2.3 Feature of NIR Imaging Devices -- 5.3.3 Applications of NIR Imaging -- 5.3.3.1 Monitoring of Crystal Evolution Combined with Chemometrics -- 5.3.3.2 Quality Evaluation Potential for Wide Area -- 5.3.3.3 Diffusion Process Monitoring -- 5.3.3.4 Degradable Process Monitoring of Biodegradable Polymer 5.3.3.5 Rapid Evaluation of the Water Content in PLA Pellets -- 5.3.3.6 Nondestructive Detection of Degraded Polylactic Acid Moldings -- References -- Chapter 6 Far Ultraviolet Spectroscopy for Polymers -- 6.1 Introduction -- 6.2 Measurement of ATR-FUV Spectra of Polymer -- 6.3 ATR-FUV Spectra of Nylons -- 6.4 ATR-FUV Spectra of Poly(3‐hydroxybutyrate) (PHB) and Its Graphene Nanocomposites -- 6.5 ATR-FUV Study of Poly(ethylene glycol) (PEG) and Its Complex with Lithium Ion (Li+) -- 6.6 Summary -- References -- Chapter 7 Synchrotron‐Based UV Resonance Raman Spectroscopy for Polymer Characterization -- 7.1 Basic Principles of Raman and UV Resonance Raman Spectroscopy -- 7.1.1 Molecular Vibrations and Raman Effect -- 7.1.2 Resonance Raman (RR) Scattering -- 7.1.3 Fundamental Applications of UV Resonance Raman Spectroscopy -- 7.2 Synchrotron‐Based UV Resonance Raman: Basic Principles and Instrumentation -- 7.2.1 Synchrotron‐Based UVRR Setup on IUVS@Elettra -- 7.3 SR‐UVRR Characterization of Biopolymers -- 7.4 UV Resonance Raman Studies on Polymeric Hydrogels -- 7.4.1 Water Confinement in Polysaccharide Hydrogels -- 7.4.2 Phase Transition in Thermo‐Sensitive Polysaccharide Hydrogels -- 7.4.3 Water and Polymer Dynamics in pH‐Responsive Polysaccharide Hydrogels -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Sum Frequency Generation Spectroscopy for Understanding the Polymer Dynamics at Buried Interfaces -- 8.1 Introduction -- 8.2 Principle -- 8.3 Examples -- 8.3.1 Nonsolvent Interface -- 8.3.1.1 Polystyrene -- 8.3.2 Solid Interface -- 8.3.2.1 Polystyrene -- 8.3.2.2 Polyisoprene -- 8.3.2.3 Poly(styrene‐co‐butadiene) Rubber -- 8.4 Conclusions -- Acknowledgements -- References -- Chapter 9 Application of Two‐Dimensional Correlation Spectroscopy (2D‐COS) in Polymer Studies -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 Background 9.2.2 Properties of 2D‐COS -- 9.3 Applications of 2D‐COS in Polymer Studies -- 9.3.1 Applications of Conventional 2D‐COS -- 9.3.1.1 Biodegradable Polymers -- 9.3.1.2 Thermo‐Responsive Polymers -- 9.3.2 2D Hetero‐Spectral Correlation Analysis -- 9.3.3 Two‐Dimensional (2D) Gradient‐Mapping Method -- 9.3.4 Chemometric Techniques Combined with 2D‐COS -- 9.3.5 Smooth Factor Analysis -- 9.3.6 Projection 2D‐COS -- 9.3.7 2D‐COS for Hyperspectral Imaging -- 9.4 Conclusions -- References -- Chapter 10 Molecular Dynamics in Polymer Science -- 10.1 Introduction -- 10.2 Historical and Theoretical Background -- 10.3 Applications -- 10.3.1 Vibrational Spectra of Hydrogen‐Bonded Polymers -- 10.3.2 Studies of Interactions Between Polymers and Water -- 10.3.3 Mechanical Properties of Polymers -- 10.3.4 Interphase Interactions -- 10.4 Summary and Perspectives -- Acknowledgment -- References -- Chapter 11 Spectroscopic Analysis of Structural Transformations Associated with Poly(lactic acid) -- 11.1 Introduction -- 11.2 Spectroscopic Tools -- 11.2.1 Vibrational Features of PLA Crystals -- 11.2.2 Analysis of Disordered PLA Chains -- 11.2.3 Description of Anisotropic PLA - Polarized Spectra -- 11.3 Simulation Studies for Both Ordered and Disordered Structures -- 11.4 Analysis of Conformational Changes in PLA During Deformation -- 11.5 Aging Behavior in PLA -- 11.6 Conclusion -- Acknowledgment -- References -- Part II Topical Polymers Studied by Spectroscopy -- Chapter 12 Probing Molecular Events in Self‐Healable Polymers -- 12.1 Introduction -- 12.2 Microphase Separation -- 12.3 Entropically Driven Self‐Healing -- 12.3.1 Free Radical and Cationic Recombination -- 12.3.2 Van der Waals Interactions -- 12.3.3 Chemical Sensing of Damage-Repair Cycle -- Acknowledgments -- References -- Chapter 13 Recent Application of Vibrational Spectroscopy to Conjugated Conducting Polymers 13.1 Introduction Polymere (DE-588)4046699-1 gnd Spektroskopie (DE-588)4056138-0 gnd |
subject_GND | (DE-588)4046699-1 (DE-588)4056138-0 (DE-588)4143413-4 |
title | Spectroscopic techniques for polymer characterization methods, instrumentation, applications |
title_auth | Spectroscopic techniques for polymer characterization methods, instrumentation, applications |
title_exact_search | Spectroscopic techniques for polymer characterization methods, instrumentation, applications |
title_exact_search_txtP | Spectroscopic techniques for polymer characterization methods, instrumentation, applications |
title_full | Spectroscopic techniques for polymer characterization methods, instrumentation, applications edited by Yukihiro Ozaki and Harumi Sato |
title_fullStr | Spectroscopic techniques for polymer characterization methods, instrumentation, applications edited by Yukihiro Ozaki and Harumi Sato |
title_full_unstemmed | Spectroscopic techniques for polymer characterization methods, instrumentation, applications edited by Yukihiro Ozaki and Harumi Sato |
title_short | Spectroscopic techniques for polymer characterization |
title_sort | spectroscopic techniques for polymer characterization methods instrumentation applications |
title_sub | methods, instrumentation, applications |
topic | Polymere (DE-588)4046699-1 gnd Spektroskopie (DE-588)4056138-0 gnd |
topic_facet | Polymere Spektroskopie Aufsatzsammlung |
work_keys_str_mv | AT ozakiyukihiro spectroscopictechniquesforpolymercharacterizationmethodsinstrumentationapplications AT satoharumi spectroscopictechniquesforpolymercharacterizationmethodsinstrumentationapplications |