Heuristic model selection for leading indicators in Russia and Germany:
Business tendency survey indicators are widely recognised as a key instrument for business cycle forecasting. Their leading indicator property is assessed with regard to forecasting industrial production in Russia and Germany. For this purpose, vector autoregressive (VAR) models are specified and es...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch Buchkapitel |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2013
|
Schlagworte: | |
Online-Zugang: | DE-384 DE-473 DE-824 DE-29 DE-739 DE-355 DE-20 DE-1028 DE-1049 DE-521 DE-861 DE-898 DE-92 DE-91 DE-573 DE-19 URL des Erstveröffentlichers |
Zusammenfassung: | Business tendency survey indicators are widely recognised as a key instrument for business cycle forecasting. Their leading indicator property is assessed with regard to forecasting industrial production in Russia and Germany. For this purpose, vector autoregressive (VAR) models are specified and estimated to construct forecasts. As the potential number of lags included is large, we compare full-specified VAR models with subset models obtained using a Genetic Algorithm enabling "holes" in multivariate lag structures. The problem is complicated by the fact that a structural break and seasonal variation of indicators have to be taken into account. The models allow for a comparison of the dynamic adjustment and the forecasting performance of the leading indicators for both countries revealing marked differences between Russia and Germany. JEL classification: C52, C61, E37 Keywords: Leading indicators, business cycle forecasts, VAR, model selection, genetic algorithms |
Beschreibung: | 1 Online-Ressource (23 Seiten) 21 x 28cm |
DOI: | 10.1787/jbcma-2012-5k49pkpbf76j |
Internformat
MARC
LEADER | 00000nma a2200000zc 4500 | ||
---|---|---|---|
001 | BV047939437 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2013 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1787/jbcma-2012-5k49pkpbf76j |2 doi | |
035 | |a (ZDB-13-SOC)061273228 | ||
035 | |a (OCoLC)961400079 | ||
035 | |a (DE-599)BVBBV047939437 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
100 | 1 | |a Savin, Ivan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Heuristic model selection for leading indicators in Russia and Germany |c Ivan Savin and Peter Winker |
264 | 1 | |a Paris |b OECD Publishing |c 2013 | |
300 | |a 1 Online-Ressource (23 Seiten) |c 21 x 28cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Business tendency survey indicators are widely recognised as a key instrument for business cycle forecasting. Their leading indicator property is assessed with regard to forecasting industrial production in Russia and Germany. For this purpose, vector autoregressive (VAR) models are specified and estimated to construct forecasts. As the potential number of lags included is large, we compare full-specified VAR models with subset models obtained using a Genetic Algorithm enabling "holes" in multivariate lag structures. The problem is complicated by the fact that a structural break and seasonal variation of indicators have to be taken into account. The models allow for a comparison of the dynamic adjustment and the forecasting performance of the leading indicators for both countries revealing marked differences between Russia and Germany. JEL classification: C52, C61, E37 Keywords: Leading indicators, business cycle forecasts, VAR, model selection, genetic algorithms | ||
650 | 4 | |a Economics | |
700 | 1 | |a Winker, Peter |4 ctb | |
856 | 4 | 0 | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033320931 | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-384 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-473 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-824 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-29 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-739 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-355 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-20 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-1028 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-1049 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-521 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-861 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-898 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-92 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-91 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-573 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |l DE-19 |p ZDB-13-SOC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1815091529565339648 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Savin, Ivan |
author2 | Winker, Peter |
author2_role | ctb |
author2_variant | p w pw |
author_facet | Savin, Ivan Winker, Peter |
author_role | aut |
author_sort | Savin, Ivan |
author_variant | i s is |
building | Verbundindex |
bvnumber | BV047939437 |
collection | ebook |
ctrlnum | (ZDB-13-SOC)061273228 (OCoLC)961400079 (DE-599)BVBBV047939437 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/jbcma-2012-5k49pkpbf76j |
format | Electronic Book Chapter |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nma a2200000zc 4500</leader><controlfield tag="001">BV047939437</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)061273228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)961400079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047939437</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Savin, Ivan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heuristic model selection for leading indicators in Russia and Germany</subfield><subfield code="c">Ivan Savin and Peter Winker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (23 Seiten)</subfield><subfield code="c">21 x 28cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Business tendency survey indicators are widely recognised as a key instrument for business cycle forecasting. Their leading indicator property is assessed with regard to forecasting industrial production in Russia and Germany. For this purpose, vector autoregressive (VAR) models are specified and estimated to construct forecasts. As the potential number of lags included is large, we compare full-specified VAR models with subset models obtained using a Genetic Algorithm enabling "holes" in multivariate lag structures. The problem is complicated by the fact that a structural break and seasonal variation of indicators have to be taken into account. The models allow for a comparison of the dynamic adjustment and the forecasting performance of the leading indicators for both countries revealing marked differences between Russia and Germany. JEL classification: C52, C61, E37 Keywords: Leading indicators, business cycle forecasts, VAR, model selection, genetic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Winker, Peter</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033320931</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-1028</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-1049</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-521</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047939437 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:35:10Z |
indexdate | 2024-11-07T19:02:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033320931 |
oclc_num | 961400079 |
open_access_boolean | |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (23 Seiten) 21 x 28cm |
psigel | ebook ZDB-13-SOC |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | OECD Publishing |
record_format | marc |
spelling | Savin, Ivan Verfasser aut Heuristic model selection for leading indicators in Russia and Germany Ivan Savin and Peter Winker Paris OECD Publishing 2013 1 Online-Ressource (23 Seiten) 21 x 28cm txt rdacontent c rdamedia cr rdacarrier Business tendency survey indicators are widely recognised as a key instrument for business cycle forecasting. Their leading indicator property is assessed with regard to forecasting industrial production in Russia and Germany. For this purpose, vector autoregressive (VAR) models are specified and estimated to construct forecasts. As the potential number of lags included is large, we compare full-specified VAR models with subset models obtained using a Genetic Algorithm enabling "holes" in multivariate lag structures. The problem is complicated by the fact that a structural break and seasonal variation of indicators have to be taken into account. The models allow for a comparison of the dynamic adjustment and the forecasting performance of the leading indicators for both countries revealing marked differences between Russia and Germany. JEL classification: C52, C61, E37 Keywords: Leading indicators, business cycle forecasts, VAR, model selection, genetic algorithms Economics Winker, Peter ctb https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Savin, Ivan Heuristic model selection for leading indicators in Russia and Germany Economics |
title | Heuristic model selection for leading indicators in Russia and Germany |
title_auth | Heuristic model selection for leading indicators in Russia and Germany |
title_exact_search | Heuristic model selection for leading indicators in Russia and Germany |
title_exact_search_txtP | Heuristic model selection for leading indicators in Russia and Germany |
title_full | Heuristic model selection for leading indicators in Russia and Germany Ivan Savin and Peter Winker |
title_fullStr | Heuristic model selection for leading indicators in Russia and Germany Ivan Savin and Peter Winker |
title_full_unstemmed | Heuristic model selection for leading indicators in Russia and Germany Ivan Savin and Peter Winker |
title_short | Heuristic model selection for leading indicators in Russia and Germany |
title_sort | heuristic model selection for leading indicators in russia and germany |
topic | Economics |
topic_facet | Economics |
url | https://doi.org/10.1787/jbcma-2012-5k49pkpbf76j |
work_keys_str_mv | AT savinivan heuristicmodelselectionforleadingindicatorsinrussiaandgermany AT winkerpeter heuristicmodelselectionforleadingindicatorsinrussiaandgermany |