Linking Aid to the Sustainable Development Goals - a machine learning approach:
Official Development Assistance amounted USD 146.6 billions in 2017 but do we know how much of this aid contributed to the Sustainable Development Goals (SDGs)? And to what SDG in particular? This paper present a new methodology using machine learning designed to link project-based flows to the Sust...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2019
|
Schriftenreihe: | OECD Development Co-operation Working Papers
|
Schlagworte: | |
Online-Zugang: | UBA01 UBG01 UEI01 UER01 UPA01 UBR01 UBW01 FFW01 FNU01 EUV01 FRO01 FHR01 FHN01 TUM01 FHI01 UBM01 Volltext |
Zusammenfassung: | Official Development Assistance amounted USD 146.6 billions in 2017 but do we know how much of this aid contributed to the Sustainable Development Goals (SDGs)? And to what SDG in particular? This paper present a new methodology using machine learning designed to link project-based flows to the Sustainable Development Goals. It provide first estimates of DAC and non-DAC donors' aid contribution for the goal and show that similar analysis can be done at the recipient level and for other type of textual database such as private sector reports; opening wide array for policy analysis. The methodology presented in this working paper uses semantic analysis of the text description of each project present in the Creditor Reporting System (CRS) |
Beschreibung: | 1 Online-Ressource (58 Seiten) |
DOI: | 10.1787/4bdaeb8c-en |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047933483 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2019 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1787/4bdaeb8c-en |2 doi | |
035 | |a (ZDB-13-SOC)061293032 | ||
035 | |a (OCoLC)1312693704 | ||
035 | |a (DE-599)BVBBV047933483 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
100 | 1 | |a Pincet, Arnaud |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linking Aid to the Sustainable Development Goals - a machine learning approach |c Arnaud Pincet, Shu Okabe and Martin Pawelczyk |
264 | 1 | |a Paris |b OECD Publishing |c 2019 | |
300 | |a 1 Online-Ressource (58 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Development Co-operation Working Papers | |
520 | |a Official Development Assistance amounted USD 146.6 billions in 2017 but do we know how much of this aid contributed to the Sustainable Development Goals (SDGs)? And to what SDG in particular? This paper present a new methodology using machine learning designed to link project-based flows to the Sustainable Development Goals. It provide first estimates of DAC and non-DAC donors' aid contribution for the goal and show that similar analysis can be done at the recipient level and for other type of textual database such as private sector reports; opening wide array for policy analysis. The methodology presented in this working paper uses semantic analysis of the text description of each project present in the Creditor Reporting System (CRS) | ||
650 | 4 | |a Development | |
700 | 1 | |a Okabe, Shu |4 ctb | |
700 | 1 | |a Pawelczyk, Martin |4 ctb | |
856 | 4 | 0 | |u https://doi.org/10.1787/4bdaeb8c-en |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-13-SOC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033314977 | ||
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UBA01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UBG01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UEI01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UER01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UPA01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UBR01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UBW01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l FFW01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l FNU01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l EUV01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l FRO01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l FHR01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l FHN01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l TUM01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l FHI01 |p ZDB-13-SOC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1787/4bdaeb8c-en |l UBM01 |p ZDB-13-SOC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183573318598656 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Pincet, Arnaud |
author2 | Okabe, Shu Pawelczyk, Martin |
author2_role | ctb ctb |
author2_variant | s o so m p mp |
author_facet | Pincet, Arnaud Okabe, Shu Pawelczyk, Martin |
author_role | aut |
author_sort | Pincet, Arnaud |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV047933483 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)061293032 (OCoLC)1312693704 (DE-599)BVBBV047933483 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/4bdaeb8c-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03431nmm a2200541zc 4500</leader><controlfield tag="001">BV047933483</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/4bdaeb8c-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)061293032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312693704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047933483</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pincet, Arnaud</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linking Aid to the Sustainable Development Goals - a machine learning approach</subfield><subfield code="c">Arnaud Pincet, Shu Okabe and Martin Pawelczyk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (58 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Development Co-operation Working Papers</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Official Development Assistance amounted USD 146.6 billions in 2017 but do we know how much of this aid contributed to the Sustainable Development Goals (SDGs)? And to what SDG in particular? This paper present a new methodology using machine learning designed to link project-based flows to the Sustainable Development Goals. It provide first estimates of DAC and non-DAC donors' aid contribution for the goal and show that similar analysis can be done at the recipient level and for other type of textual database such as private sector reports; opening wide array for policy analysis. The methodology presented in this working paper uses semantic analysis of the text description of each project present in the Creditor Reporting System (CRS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Development</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okabe, Shu</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pawelczyk, Martin</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033314977</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">FFW01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">FNU01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">EUV01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1787/4bdaeb8c-en</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-13-SOC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047933483 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:35:00Z |
indexdate | 2024-07-10T09:25:35Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033314977 |
oclc_num | 1312693704 |
open_access_boolean | |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (58 Seiten) |
psigel | ZDB-13-SOC |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Development Co-operation Working Papers |
spelling | Pincet, Arnaud Verfasser aut Linking Aid to the Sustainable Development Goals - a machine learning approach Arnaud Pincet, Shu Okabe and Martin Pawelczyk Paris OECD Publishing 2019 1 Online-Ressource (58 Seiten) txt rdacontent c rdamedia cr rdacarrier OECD Development Co-operation Working Papers Official Development Assistance amounted USD 146.6 billions in 2017 but do we know how much of this aid contributed to the Sustainable Development Goals (SDGs)? And to what SDG in particular? This paper present a new methodology using machine learning designed to link project-based flows to the Sustainable Development Goals. It provide first estimates of DAC and non-DAC donors' aid contribution for the goal and show that similar analysis can be done at the recipient level and for other type of textual database such as private sector reports; opening wide array for policy analysis. The methodology presented in this working paper uses semantic analysis of the text description of each project present in the Creditor Reporting System (CRS) Development Okabe, Shu ctb Pawelczyk, Martin ctb https://doi.org/10.1787/4bdaeb8c-en Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Pincet, Arnaud Linking Aid to the Sustainable Development Goals - a machine learning approach Development |
title | Linking Aid to the Sustainable Development Goals - a machine learning approach |
title_auth | Linking Aid to the Sustainable Development Goals - a machine learning approach |
title_exact_search | Linking Aid to the Sustainable Development Goals - a machine learning approach |
title_exact_search_txtP | Linking Aid to the Sustainable Development Goals - a machine learning approach |
title_full | Linking Aid to the Sustainable Development Goals - a machine learning approach Arnaud Pincet, Shu Okabe and Martin Pawelczyk |
title_fullStr | Linking Aid to the Sustainable Development Goals - a machine learning approach Arnaud Pincet, Shu Okabe and Martin Pawelczyk |
title_full_unstemmed | Linking Aid to the Sustainable Development Goals - a machine learning approach Arnaud Pincet, Shu Okabe and Martin Pawelczyk |
title_short | Linking Aid to the Sustainable Development Goals - a machine learning approach |
title_sort | linking aid to the sustainable development goals a machine learning approach |
topic | Development |
topic_facet | Development |
url | https://doi.org/10.1787/4bdaeb8c-en |
work_keys_str_mv | AT pincetarnaud linkingaidtothesustainabledevelopmentgoalsamachinelearningapproach AT okabeshu linkingaidtothesustainabledevelopmentgoalsamachinelearningapproach AT pawelczykmartin linkingaidtothesustainabledevelopmentgoalsamachinelearningapproach |