Countering Public Grant Fraud in Spain: Machine Learning for Assessing Risks and Targeting Control Activities
In the wake of the COVID-19 pandemic, governments face both old and new fraud risks, some at unprecedented levels, linked to spending on relief and recovery. Public grant programmes are a high-risk area, where any fraud ultimately diverts taxpayers' money away from essential support for individ...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2021
|
Schriftenreihe: | OECD Public Governance Reviews
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | In the wake of the COVID-19 pandemic, governments face both old and new fraud risks, some at unprecedented levels, linked to spending on relief and recovery. Public grant programmes are a high-risk area, where any fraud ultimately diverts taxpayers' money away from essential support for individuals and businesses. This report identifies how Spain's General Comptroller of the State Administration (Intervención General de la Administración del Estado, IGAE) could better identify and control for grant fraud risks. It demonstrates how innovative machine learning techniques can support the IGAE in enhancing its assessment of fraud risks in grant data. It presents a working risk model, developed with datasets at the IGAE's disposal, and maps datasets it could use in the future. The report also considers the preconditions for advanced analytics and risk assessments, including ways for the IGAE to improve its data governance and data management |
Beschreibung: | 1 Online-Ressource (87 Seiten) 21 x 28cm |
ISBN: | 9789264604704 9789264374669 9789264554368 |
DOI: | 10.1787/0ea22484-en |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047928114 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2021 xx o|||| 00||| eng d | ||
020 | |a 9789264604704 |9 978-92-64-60470-4 | ||
020 | |a 9789264374669 |9 978-92-64-37466-9 | ||
020 | |a 9789264554368 |9 978-92-64-55436-8 | ||
024 | 7 | |a 10.1787/0ea22484-en |2 doi | |
035 | |a (ZDB-13-SOC)07258856X | ||
035 | |a (OCoLC)1312690617 | ||
035 | |a (DE-599)BVBBV047928114 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
245 | 1 | 0 | |a Countering Public Grant Fraud in Spain |b Machine Learning for Assessing Risks and Targeting Control Activities |c Organisation for Economic Co-operation and Development |
264 | 1 | |a Paris |b OECD Publishing |c 2021 | |
300 | |a 1 Online-Ressource (87 Seiten) |c 21 x 28cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Public Governance Reviews | |
520 | |a In the wake of the COVID-19 pandemic, governments face both old and new fraud risks, some at unprecedented levels, linked to spending on relief and recovery. Public grant programmes are a high-risk area, where any fraud ultimately diverts taxpayers' money away from essential support for individuals and businesses. This report identifies how Spain's General Comptroller of the State Administration (Intervención General de la Administración del Estado, IGAE) could better identify and control for grant fraud risks. It demonstrates how innovative machine learning techniques can support the IGAE in enhancing its assessment of fraud risks in grant data. It presents a working risk model, developed with datasets at the IGAE's disposal, and maps datasets it could use in the future. The report also considers the preconditions for advanced analytics and risk assessments, including ways for the IGAE to improve its data governance and data management | ||
650 | 4 | |a Governance | |
650 | 4 | |a Spain | |
856 | 4 | 0 | |u https://doi.org/10.1787/0ea22484-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033309607 |
Datensatz im Suchindex
_version_ | 1818805950454169600 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
building | Verbundindex |
bvnumber | BV047928114 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)07258856X (OCoLC)1312690617 (DE-599)BVBBV047928114 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/0ea22484-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047928114</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789264604704</subfield><subfield code="9">978-92-64-60470-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789264374669</subfield><subfield code="9">978-92-64-37466-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789264554368</subfield><subfield code="9">978-92-64-55436-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/0ea22484-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)07258856X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312690617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047928114</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Countering Public Grant Fraud in Spain</subfield><subfield code="b">Machine Learning for Assessing Risks and Targeting Control Activities</subfield><subfield code="c">Organisation for Economic Co-operation and Development</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (87 Seiten)</subfield><subfield code="c">21 x 28cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Public Governance Reviews</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the wake of the COVID-19 pandemic, governments face both old and new fraud risks, some at unprecedented levels, linked to spending on relief and recovery. Public grant programmes are a high-risk area, where any fraud ultimately diverts taxpayers' money away from essential support for individuals and businesses. This report identifies how Spain's General Comptroller of the State Administration (Intervención General de la Administración del Estado, IGAE) could better identify and control for grant fraud risks. It demonstrates how innovative machine learning techniques can support the IGAE in enhancing its assessment of fraud risks in grant data. It presents a working risk model, developed with datasets at the IGAE's disposal, and maps datasets it could use in the future. The report also considers the preconditions for advanced analytics and risk assessments, including ways for the IGAE to improve its data governance and data management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Governance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spain</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/0ea22484-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033309607</subfield></datafield></record></collection> |
id | DE-604.BV047928114 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:34:54Z |
indexdate | 2024-12-18T19:02:01Z |
institution | BVB |
isbn | 9789264604704 9789264374669 9789264554368 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033309607 |
oclc_num | 1312690617 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (87 Seiten) 21 x 28cm |
psigel | ZDB-13-SOC |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Public Governance Reviews |
spelling | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities Organisation for Economic Co-operation and Development Paris OECD Publishing 2021 1 Online-Ressource (87 Seiten) 21 x 28cm txt rdacontent c rdamedia cr rdacarrier OECD Public Governance Reviews In the wake of the COVID-19 pandemic, governments face both old and new fraud risks, some at unprecedented levels, linked to spending on relief and recovery. Public grant programmes are a high-risk area, where any fraud ultimately diverts taxpayers' money away from essential support for individuals and businesses. This report identifies how Spain's General Comptroller of the State Administration (Intervención General de la Administración del Estado, IGAE) could better identify and control for grant fraud risks. It demonstrates how innovative machine learning techniques can support the IGAE in enhancing its assessment of fraud risks in grant data. It presents a working risk model, developed with datasets at the IGAE's disposal, and maps datasets it could use in the future. The report also considers the preconditions for advanced analytics and risk assessments, including ways for the IGAE to improve its data governance and data management Governance Spain https://doi.org/10.1787/0ea22484-en Verlag kostenfrei Volltext |
spellingShingle | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities Governance Spain |
title | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities |
title_auth | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities |
title_exact_search | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities |
title_exact_search_txtP | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities |
title_full | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities Organisation for Economic Co-operation and Development |
title_fullStr | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities Organisation for Economic Co-operation and Development |
title_full_unstemmed | Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities Organisation for Economic Co-operation and Development |
title_short | Countering Public Grant Fraud in Spain |
title_sort | countering public grant fraud in spain machine learning for assessing risks and targeting control activities |
title_sub | Machine Learning for Assessing Risks and Targeting Control Activities |
topic | Governance Spain |
topic_facet | Governance Spain |
url | https://doi.org/10.1787/0ea22484-en |