What is a quantum field theory?: a first introduction for mathematicians
Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridg...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-29 Volltext |
Zusammenfassung: | Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses |
Beschreibung: | Title from publisher's bibliographic system (viewed on 23 Feb 2022) |
Beschreibung: | 1 Online-Ressource (xv, 741 Seiten) |
ISBN: | 9781108225144 |
DOI: | 10.1017/9781108225144 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047926374 | ||
003 | DE-604 | ||
005 | 20240611 | ||
007 | cr|uuu---uuuuu | ||
008 | 220412s2022 xx o|||| 00||| eng d | ||
020 | |a 9781108225144 |c Online |9 978-1-108-22514-4 | ||
024 | 7 | |a 10.1017/9781108225144 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108225144 | ||
035 | |a (OCoLC)1312686494 | ||
035 | |a (DE-599)BVBBV047926374 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-29 | ||
082 | 0 | |a 530.14/3 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Talagrand, Michel |d 1952- |0 (DE-588)112924379 |4 aut | |
245 | 1 | 0 | |a What is a quantum field theory? |b a first introduction for mathematicians |c Michel Talagrand |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xv, 741 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 23 Feb 2022) | ||
520 | |a Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses | ||
650 | 4 | |a Quantum field theory | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-31-651027-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108225144 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033307899 | |
966 | e | |u https://doi.org/10.1017/9781108225144 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108225144 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108225144 |l DE-29 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1820882847103188992 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Talagrand, Michel 1952- |
author_GND | (DE-588)112924379 |
author_facet | Talagrand, Michel 1952- |
author_role | aut |
author_sort | Talagrand, Michel 1952- |
author_variant | m t mt |
building | Verbundindex |
bvnumber | BV047926374 |
classification_rvk | UO 4000 SK 950 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108225144 (OCoLC)1312686494 (DE-599)BVBBV047926374 |
dewey-full | 530.14/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/3 |
dewey-search | 530.14/3 |
dewey-sort | 3530.14 13 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik |
doi_str_mv | 10.1017/9781108225144 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047926374</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240611</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220412s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108225144</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-22514-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108225144</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108225144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312686494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047926374</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Talagrand, Michel</subfield><subfield code="d">1952-</subfield><subfield code="0">(DE-588)112924379</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What is a quantum field theory?</subfield><subfield code="b">a first introduction for mathematicians</subfield><subfield code="c">Michel Talagrand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 741 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 23 Feb 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-31-651027-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108225144</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033307899</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108225144</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108225144</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108225144</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047926374 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:34:30Z |
indexdate | 2025-01-10T17:13:24Z |
institution | BVB |
isbn | 9781108225144 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033307899 |
oclc_num | 1312686494 |
open_access_boolean | |
owner | DE-12 DE-92 DE-29 |
owner_facet | DE-12 DE-92 DE-29 |
physical | 1 Online-Ressource (xv, 741 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UER_PDA_CBO_Kauf_2024 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Talagrand, Michel 1952- (DE-588)112924379 aut What is a quantum field theory? a first introduction for mathematicians Michel Talagrand Cambridge Cambridge University Press 2022 1 Online-Ressource (xv, 741 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 23 Feb 2022) Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses Quantum field theory Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Mathematische Physik (DE-588)4037952-8 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-31-651027-8 https://doi.org/10.1017/9781108225144 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Talagrand, Michel 1952- What is a quantum field theory? a first introduction for mathematicians Quantum field theory Quantenfeldtheorie (DE-588)4047984-5 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4037952-8 |
title | What is a quantum field theory? a first introduction for mathematicians |
title_auth | What is a quantum field theory? a first introduction for mathematicians |
title_exact_search | What is a quantum field theory? a first introduction for mathematicians |
title_exact_search_txtP | What is a quantum field theory? a first introduction for mathematicians |
title_full | What is a quantum field theory? a first introduction for mathematicians Michel Talagrand |
title_fullStr | What is a quantum field theory? a first introduction for mathematicians Michel Talagrand |
title_full_unstemmed | What is a quantum field theory? a first introduction for mathematicians Michel Talagrand |
title_short | What is a quantum field theory? |
title_sort | what is a quantum field theory a first introduction for mathematicians |
title_sub | a first introduction for mathematicians |
topic | Quantum field theory Quantenfeldtheorie (DE-588)4047984-5 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | Quantum field theory Quantenfeldtheorie Mathematische Physik |
url | https://doi.org/10.1017/9781108225144 |
work_keys_str_mv | AT talagrandmichel whatisaquantumfieldtheoryafirstintroductionformathematicians |