Distributionally robust learning:

This monograph provides insight into a technique that has gained a lot of recent interest in developing robust supervised learning solutions that are founded in sound mathematical principles. It will be enlightening for researchers, practitioners and students in the optimization of machine learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Ruidi (VerfasserIn), Paschalidis, Ioannis Ch (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston ; Delft Now Publishers 2020
Schriftenreihe:Foundations and trends in optimization Vol. 4, no. 1-2
Schlagworte:
Online-Zugang:TUM01
Zusammenfassung:This monograph provides insight into a technique that has gained a lot of recent interest in developing robust supervised learning solutions that are founded in sound mathematical principles. It will be enlightening for researchers, practitioners and students in the optimization of machine learning systems
Intro -- Introduction -- Robust Optimization -- Distributionally Robust Optimization -- Outline -- Notational Conventions -- Abbreviations -- The Wasserstein Metric -- Basics -- A Distance Metric -- The Dual Problem -- Some Special Cases -- The Transport Cost Function -- Robustness of the Wasserstein Ambiguity Set -- Setting the Radius of the Wasserstein Ball -- Solving the Wasserstein DRO Problem -- Dual Method -- The Extreme Distribution -- A Discrete Empirical Nominal Distribution -- Finite Sample Performance -- Asymptotic Consistency -- Distributionally Robust Linear Regression -- The Problem and Related Work -- The Wasserstein DRO Formulation for Linear Regression -- Performance Guarantees for the DRO Estimator -- Experiments on the Performance of Wasserstein DRO -- An Application of Wasserstein DRO to Outlier Detection -- Summary -- Distributionally Robust Grouped Variable Selection -- The Problem and Related Work -- The Groupwise Wasserstein Grouped LASSO -- Performance Guarantees to the DRO Groupwise Estimator -- Numerical Experiments -- Summary -- Distributionally Robust Multi-Output Learning -- The Problem and Related Work -- Distributionally Robust Multi-Output Learning Models -- The Out-of-Sample Performance Guarantees -- Numerical Experiments -- Summary -- Optimal Decision Making via Regression Informed K-NN -- The Problem and Related Work -- Robust Nonlinear Predictive Model -- Prescriptive Policy Development -- Developing Optimal Prescriptions for Patients -- Summary -- Advanced Topics in Distributionally Robust Learning -- Distributionally Robust Learning with Unlabeled Data -- Distributionally Robust Reinforcement Learning -- Discussion and Conclusions -- Acknowledgments -- References
Beschreibung:Description based on publisher supplied metadata and other sources
Beschreibung:1 online resource (252 pages)
ISBN:9781680837735

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!