Separable optimization: theory and methods
Preface to the New Edition -- Preface.-1 Preliminaries: Convex Analysis and Convex Programming -- Part I. Separable Programming -- 2 Introduction: Approximating the Separable Problem -- 3. Convex Separable Programming -- 4. Separable Programming: A Dynamic Programming Approach -- Part II. Convex Sep...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing
2021
Cham Imprint: Springer 2021 |
Ausgabe: | 2nd ed. |
Schriftenreihe: | Springer optimization and its applications
177 |
Schlagworte: | |
Online-Zugang: | DE-634 DE-1043 DE-92 DE-898 DE-523 DE-384 DE-19 DE-20 DE-706 DE-824 Volltext |
Zusammenfassung: | Preface to the New Edition -- Preface.-1 Preliminaries: Convex Analysis and Convex Programming -- Part I. Separable Programming -- 2 Introduction: Approximating the Separable Problem -- 3. Convex Separable Programming -- 4. Separable Programming: A Dynamic Programming Approach -- Part II. Convex Separable Programming With Bounds on the Variables -- 5. Statement of the Main Problem. Basic Result -- 6. Version One: Linear Equality Constraints -- 7. The Algorithms -- 8. Version Two: Linear Constraint of the Form geq -- 9. Well-Posedness of Optimization Problems. On the Stability of the Set of Saddle Points of the Lagrangian -- 10. Extensions -- 11. Applications and Computational Experiments -- Part III. Selected Supplementary Topics and Applications -- 12. Applications of Convex Separable Unconstrained Nondifferentiable Optimization to Approximation Theory -- 13. About Projections in the Implementation of Stochastic Quasigradient Methods to Some Probabilistic Inventory Control Problems -- 14. Valid Inequalities, Cutting Planes and Integrality ofthe Knapsack Polytope -- 15. Relaxation of the Equality Constrained Convex Continuous Knapsack Problem -- 16. On the Solution of Multidimensional Convex Separable Continuous Knapsack Problem with Bounded Variables -- 17. Characterization of the Optimal Solution of the Convex Generalized Nonlinear Transportation Problem -- Appendices -- A. Some Definitions and Theorems from Calculus -- B. Metric, Banach and Hilbert Spaces -- C. Existence of Solutions to Optimization Problems — A General Approach -- D. Best Approximation: Existence and Uniqueness -- E. On the Solvability of a Quadratic Optimization Problem with a Feasible Region Defined as a Minkowski Sum of a Compact Set and Finitely Generated Convex Closed Cone- F. On the Cauchy-Schwarz Inequality Approach for Solving a Quadratic Optimization Problem -- G. Theorems of the Alternative -- Bibliography -- List of Notation -- List of Statements -- Index |
Beschreibung: | 1 Online-Ressource (XVII, 356 Seiten) |
ISBN: | 9783030784010 |
DOI: | 10.1007/978-3-030-78401-0 |
Internformat
MARC
LEADER | 00000nam a22000001cb4500 | ||
---|---|---|---|
001 | BV047813171 | ||
003 | DE-604 | ||
005 | 20241105 | ||
007 | cr|uuu---uuuuu | ||
008 | 220203s2021 sz o|||| 00||| eng d | ||
020 | |a 9783030784010 |9 978-3-030-78401-0 | ||
024 | 7 | |a 10.1007/978-3-030-78401-0 |2 doi | |
035 | |a (OCoLC)1296330920 | ||
035 | |a (DE-599)BVBBV047813171 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-384 |a DE-188 |a DE-1043 |a DE-523 |a DE-634 |a DE-898 |a DE-824 |a DE-19 |a DE-20 |a DE-92 |a DE-706 | ||
082 | 0 | |a 519.6 |2 23 | |
100 | 1 | |a Stefanov, Stefan M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Separable optimization |b theory and methods |c by Stefan M. Stefanov |
250 | |a 2nd ed. | ||
264 | 1 | |a Cham |b Springer International Publishing |c 2021 | |
264 | 1 | |a Cham |b Imprint: Springer |c 2021 | |
300 | |a 1 Online-Ressource (XVII, 356 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Springer optimization and its applications |v 177 | |
520 | 3 | |a Preface to the New Edition -- Preface.-1 Preliminaries: Convex Analysis and Convex Programming -- Part I. Separable Programming -- 2 Introduction: Approximating the Separable Problem -- 3. Convex Separable Programming -- 4. Separable Programming: A Dynamic Programming Approach -- Part II. Convex Separable Programming With Bounds on the Variables -- 5. Statement of the Main Problem. Basic Result -- 6. Version One: Linear Equality Constraints -- 7. The Algorithms -- 8. Version Two: Linear Constraint of the Form geq -- 9. Well-Posedness of Optimization Problems. On the Stability of the Set of Saddle Points of the Lagrangian -- 10. Extensions -- 11. Applications and Computational Experiments -- Part III. Selected Supplementary Topics and Applications -- 12. Applications of Convex Separable Unconstrained Nondifferentiable Optimization to Approximation Theory -- 13. About Projections in the Implementation of Stochastic Quasigradient Methods to Some Probabilistic Inventory Control Problems -- 14. Valid Inequalities, Cutting Planes and Integrality ofthe Knapsack Polytope -- 15. Relaxation of the Equality Constrained Convex Continuous Knapsack Problem -- 16. On the Solution of Multidimensional Convex Separable Continuous Knapsack Problem with Bounded Variables -- 17. Characterization of the Optimal Solution of the Convex Generalized Nonlinear Transportation Problem -- Appendices -- A. Some Definitions and Theorems from Calculus -- B. Metric, Banach and Hilbert Spaces -- C. Existence of Solutions to Optimization Problems — A General Approach -- D. Best Approximation: Existence and Uniqueness -- E. On the Solvability of a Quadratic Optimization Problem with a Feasible Region Defined as a Minkowski Sum of a Compact Set and Finitely Generated Convex Closed Cone- F. On the Cauchy-Schwarz Inequality Approach for Solving a Quadratic Optimization Problem -- G. Theorems of the Alternative -- Bibliography -- List of Notation -- List of Statements -- Index | |
653 | 0 | |a Mathematical optimization | |
653 | 0 | |a Operations research | |
653 | 0 | |a Management science | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-3-030-78400-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Softcover |z 978-3-030-78403-4 |
830 | 0 | |a Springer optimization and its applications |v 177 |w (DE-604)BV039769482 |9 177 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-78401-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2021 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033196637 | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-634 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-1043 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-92 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-898 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-523 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-384 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-19 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-20 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-706 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-78401-0 |l DE-824 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817311009063305216 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Stefanov, Stefan M. |
author_facet | Stefanov, Stefan M. |
author_role | aut |
author_sort | Stefanov, Stefan M. |
author_variant | s m s sm sms |
building | Verbundindex |
bvnumber | BV047813171 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)1296330920 (DE-599)BVBBV047813171 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-030-78401-0 |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001cb4500</leader><controlfield tag="001">BV047813171</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241105</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220203s2021 sz o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030784010</subfield><subfield code="9">978-3-030-78401-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-78401-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1296330920</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047813171</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stefanov, Stefan M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Separable optimization</subfield><subfield code="b">theory and methods</subfield><subfield code="c">by Stefan M. Stefanov</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Imprint: Springer</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 356 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer optimization and its applications</subfield><subfield code="v">177</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Preface to the New Edition -- Preface.-1 Preliminaries: Convex Analysis and Convex Programming -- Part I. Separable Programming -- 2 Introduction: Approximating the Separable Problem -- 3. Convex Separable Programming -- 4. Separable Programming: A Dynamic Programming Approach -- Part II. Convex Separable Programming With Bounds on the Variables -- 5. Statement of the Main Problem. Basic Result -- 6. Version One: Linear Equality Constraints -- 7. The Algorithms -- 8. Version Two: Linear Constraint of the Form geq -- 9. Well-Posedness of Optimization Problems. On the Stability of the Set of Saddle Points of the Lagrangian -- 10. Extensions -- 11. Applications and Computational Experiments -- Part III. Selected Supplementary Topics and Applications -- 12. Applications of Convex Separable Unconstrained Nondifferentiable Optimization to Approximation Theory -- 13. About Projections in the Implementation of Stochastic Quasigradient Methods to Some Probabilistic Inventory Control Problems -- 14. Valid Inequalities, Cutting Planes and Integrality ofthe Knapsack Polytope -- 15. Relaxation of the Equality Constrained Convex Continuous Knapsack Problem -- 16. On the Solution of Multidimensional Convex Separable Continuous Knapsack Problem with Bounded Variables -- 17. Characterization of the Optimal Solution of the Convex Generalized Nonlinear Transportation Problem -- Appendices -- A. Some Definitions and Theorems from Calculus -- B. Metric, Banach and Hilbert Spaces -- C. Existence of Solutions to Optimization Problems — A General Approach -- D. Best Approximation: Existence and Uniqueness -- E. On the Solvability of a Quadratic Optimization Problem with a Feasible Region Defined as a Minkowski Sum of a Compact Set and Finitely Generated Convex Closed Cone- F. On the Cauchy-Schwarz Inequality Approach for Solving a Quadratic Optimization Problem -- G. Theorems of the Alternative -- Bibliography -- List of Notation -- List of Statements -- Index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Operations research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Management science</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-3-030-78400-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Softcover</subfield><subfield code="z">978-3-030-78403-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer optimization and its applications</subfield><subfield code="v">177</subfield><subfield code="w">(DE-604)BV039769482</subfield><subfield code="9">177</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2021</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033196637</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-78401-0</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047813171 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:05:47Z |
indexdate | 2024-12-02T07:00:34Z |
institution | BVB |
isbn | 9783030784010 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033196637 |
oclc_num | 1296330920 |
open_access_boolean | |
owner | DE-384 DE-188 DE-1043 DE-523 DE-634 DE-898 DE-BY-UBR DE-824 DE-19 DE-BY-UBM DE-20 DE-92 DE-706 |
owner_facet | DE-384 DE-188 DE-1043 DE-523 DE-634 DE-898 DE-BY-UBR DE-824 DE-19 DE-BY-UBM DE-20 DE-92 DE-706 |
physical | 1 Online-Ressource (XVII, 356 Seiten) |
psigel | ZDB-2-SMA ZDB-2-SMA_2021 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer International Publishing Imprint: Springer |
record_format | marc |
series | Springer optimization and its applications |
series2 | Springer optimization and its applications |
spelling | Stefanov, Stefan M. Verfasser aut Separable optimization theory and methods by Stefan M. Stefanov 2nd ed. Cham Springer International Publishing 2021 Cham Imprint: Springer 2021 1 Online-Ressource (XVII, 356 Seiten) txt rdacontent c rdamedia cr rdacarrier Springer optimization and its applications 177 Preface to the New Edition -- Preface.-1 Preliminaries: Convex Analysis and Convex Programming -- Part I. Separable Programming -- 2 Introduction: Approximating the Separable Problem -- 3. Convex Separable Programming -- 4. Separable Programming: A Dynamic Programming Approach -- Part II. Convex Separable Programming With Bounds on the Variables -- 5. Statement of the Main Problem. Basic Result -- 6. Version One: Linear Equality Constraints -- 7. The Algorithms -- 8. Version Two: Linear Constraint of the Form geq -- 9. Well-Posedness of Optimization Problems. On the Stability of the Set of Saddle Points of the Lagrangian -- 10. Extensions -- 11. Applications and Computational Experiments -- Part III. Selected Supplementary Topics and Applications -- 12. Applications of Convex Separable Unconstrained Nondifferentiable Optimization to Approximation Theory -- 13. About Projections in the Implementation of Stochastic Quasigradient Methods to Some Probabilistic Inventory Control Problems -- 14. Valid Inequalities, Cutting Planes and Integrality ofthe Knapsack Polytope -- 15. Relaxation of the Equality Constrained Convex Continuous Knapsack Problem -- 16. On the Solution of Multidimensional Convex Separable Continuous Knapsack Problem with Bounded Variables -- 17. Characterization of the Optimal Solution of the Convex Generalized Nonlinear Transportation Problem -- Appendices -- A. Some Definitions and Theorems from Calculus -- B. Metric, Banach and Hilbert Spaces -- C. Existence of Solutions to Optimization Problems — A General Approach -- D. Best Approximation: Existence and Uniqueness -- E. On the Solvability of a Quadratic Optimization Problem with a Feasible Region Defined as a Minkowski Sum of a Compact Set and Finitely Generated Convex Closed Cone- F. On the Cauchy-Schwarz Inequality Approach for Solving a Quadratic Optimization Problem -- G. Theorems of the Alternative -- Bibliography -- List of Notation -- List of Statements -- Index Mathematical optimization Operations research Management science Erscheint auch als Druck-Ausgabe, Hardcover 978-3-030-78400-3 Erscheint auch als Druck-Ausgabe, Softcover 978-3-030-78403-4 Springer optimization and its applications 177 (DE-604)BV039769482 177 https://doi.org/10.1007/978-3-030-78401-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Stefanov, Stefan M. Separable optimization theory and methods Springer optimization and its applications |
title | Separable optimization theory and methods |
title_auth | Separable optimization theory and methods |
title_exact_search | Separable optimization theory and methods |
title_exact_search_txtP | Separable optimization theory and methods |
title_full | Separable optimization theory and methods by Stefan M. Stefanov |
title_fullStr | Separable optimization theory and methods by Stefan M. Stefanov |
title_full_unstemmed | Separable optimization theory and methods by Stefan M. Stefanov |
title_short | Separable optimization |
title_sort | separable optimization theory and methods |
title_sub | theory and methods |
url | https://doi.org/10.1007/978-3-030-78401-0 |
volume_link | (DE-604)BV039769482 |
work_keys_str_mv | AT stefanovstefanm separableoptimizationtheoryandmethods |