Separable optimization: theory and methods

Preface to the New Edition -- Preface.-1 Preliminaries: Convex Analysis and Convex Programming -- Part I. Separable Programming -- 2 Introduction: Approximating the Separable Problem -- 3. Convex Separable Programming -- 4. Separable Programming: A Dynamic Programming Approach -- Part II. Convex Sep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Stefanov, Stefan M. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham Springer International Publishing 2021
Cham Imprint: Springer 2021
Ausgabe:2nd ed.
Schriftenreihe:Springer optimization and its applications 177
Schlagworte:
Online-Zugang:DE-634
DE-1043
DE-92
DE-898
DE-523
DE-384
DE-19
DE-20
DE-706
DE-824
Volltext
Zusammenfassung:Preface to the New Edition -- Preface.-1 Preliminaries: Convex Analysis and Convex Programming -- Part I. Separable Programming -- 2 Introduction: Approximating the Separable Problem -- 3. Convex Separable Programming -- 4. Separable Programming: A Dynamic Programming Approach -- Part II. Convex Separable Programming With Bounds on the Variables -- 5. Statement of the Main Problem. Basic Result -- 6. Version One: Linear Equality Constraints -- 7. The Algorithms -- 8. Version Two: Linear Constraint of the Form geq -- 9. Well-Posedness of Optimization Problems. On the Stability of the Set of Saddle Points of the Lagrangian -- 10. Extensions -- 11. Applications and Computational Experiments -- Part III. Selected Supplementary Topics and Applications -- 12. Applications of Convex Separable Unconstrained Nondifferentiable Optimization to Approximation Theory -- 13. About Projections in the Implementation of Stochastic Quasigradient Methods to Some Probabilistic Inventory Control Problems -- 14. Valid Inequalities, Cutting Planes and Integrality ofthe Knapsack Polytope -- 15. Relaxation of the Equality Constrained Convex Continuous Knapsack Problem -- 16. On the Solution of Multidimensional Convex Separable Continuous Knapsack Problem with Bounded Variables -- 17. Characterization of the Optimal Solution of the Convex Generalized Nonlinear Transportation Problem -- Appendices -- A. Some Definitions and Theorems from Calculus -- B. Metric, Banach and Hilbert Spaces -- C. Existence of Solutions to Optimization Problems — A General Approach -- D. Best Approximation: Existence and Uniqueness -- E. On the Solvability of a Quadratic Optimization Problem with a Feasible Region Defined as a Minkowski Sum of a Compact Set and Finitely Generated Convex Closed Cone- F. On the Cauchy-Schwarz Inequality Approach for Solving a Quadratic Optimization Problem -- G. Theorems of the Alternative -- Bibliography -- List of Notation -- List of Statements -- Index
Beschreibung:1 Online-Ressource (XVII, 356 Seiten)
ISBN:9783030784010
DOI:10.1007/978-3-030-78401-0