Machine learning for knowledge discovery with R: methodologies for modeling, inference and prediction

"Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tsai, Kao-Tai (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press 2022
Ausgabe:First edition
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Zusammenfassung:"Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein"--
Beschreibung:XV, 244 Seiten Diagramme 24 cm
ISBN:9781032065366
9781032071596