Statistical approach to quantum field theory: an introduction
This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2021]
|
Ausgabe: | Second edition |
Schriftenreihe: | Lecture notes in physics
Volume 992 |
Schlagworte: | |
Zusammenfassung: | This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory |
Beschreibung: | Introduction.- Path Integrals in Quantum and Statistical Mechanics.- High-Dimensional Integrals.- Monte Carlo Simulations in Quantum Mechanics.- Scalar Fields at Zero and Finite Temperature.- Classical Spin Models: An Introduction.- Mean Field Approximation.- Transfer Matrices, Correlation Inequalities and Roots of Partition Functions.- High-Temperature and Low-Temperature Expansions.- Peierls Argument and Duality Transformations.- Renormalization Group on the Lattice.- Functional Renormalization Group.- Lattice Gauge Theories.- Two-Dimensional Lattice Gauge Theories and Group Integrals.- Fermions on a Lattice.- Finite Temperature Schwinger Model.- Interacting fermions. |
Beschreibung: | xxiv, 554 Seiten Illustrationen, Diagramme 878 grams |
ISBN: | 9783030832629 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047612607 | ||
003 | DE-604 | ||
005 | 20220114 | ||
007 | t | ||
008 | 211125s2021 a||| |||| 00||| eng d | ||
020 | |a 9783030832629 |c pbk |9 978-3-030-83262-9 | ||
024 | 3 | |a 9783030832629 | |
035 | |a (DE-599)BVBBV047612607 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Wipf, Andreas |d 1954- |e Verfasser |0 (DE-588)1028575963 |4 aut | |
245 | 1 | 0 | |a Statistical approach to quantum field theory |b an introduction |c Andreas Wipf |
250 | |a Second edition | ||
264 | 1 | |a Cham, Switzerland |b Springer |c [2021] | |
300 | |a xxiv, 554 Seiten |b Illustrationen, Diagramme |c 878 grams | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in physics |v Volume 992 | |
500 | |a Introduction.- Path Integrals in Quantum and Statistical Mechanics.- High-Dimensional Integrals.- Monte Carlo Simulations in Quantum Mechanics.- Scalar Fields at Zero and Finite Temperature.- Classical Spin Models: An Introduction.- Mean Field Approximation.- Transfer Matrices, Correlation Inequalities and Roots of Partition Functions.- High-Temperature and Low-Temperature Expansions.- Peierls Argument and Duality Transformations.- Renormalization Group on the Lattice.- Functional Renormalization Group.- Lattice Gauge Theories.- Two-Dimensional Lattice Gauge Theories and Group Integrals.- Fermions on a Lattice.- Finite Temperature Schwinger Model.- Interacting fermions. | ||
520 | |a This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory | ||
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Elementary particles (Physics) | |
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Physics | |
653 | |a Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika | ||
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-83263-6 |
830 | 0 | |a Lecture notes in physics |v Volume 992 |w (DE-604)BV000003166 |9 992 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032997417 |
Datensatz im Suchindex
_version_ | 1804182981071339520 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wipf, Andreas 1954- |
author_GND | (DE-588)1028575963 |
author_facet | Wipf, Andreas 1954- |
author_role | aut |
author_sort | Wipf, Andreas 1954- |
author_variant | a w aw |
building | Verbundindex |
bvnumber | BV047612607 |
ctrlnum | (DE-599)BVBBV047612607 |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03359nam a2200409 cb4500</leader><controlfield tag="001">BV047612607</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211125s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030832629</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-030-83262-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783030832629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047612607</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wipf, Andreas</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1028575963</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical approach to quantum field theory</subfield><subfield code="b">an introduction</subfield><subfield code="c">Andreas Wipf</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 554 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">878 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">Volume 992</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction.- Path Integrals in Quantum and Statistical Mechanics.- High-Dimensional Integrals.- Monte Carlo Simulations in Quantum Mechanics.- Scalar Fields at Zero and Finite Temperature.- Classical Spin Models: An Introduction.- Mean Field Approximation.- Transfer Matrices, Correlation Inequalities and Roots of Partition Functions.- High-Temperature and Low-Temperature Expansions.- Peierls Argument and Duality Transformations.- Renormalization Group on the Lattice.- Functional Renormalization Group.- Lattice Gauge Theories.- Two-Dimensional Lattice Gauge Theories and Group Integrals.- Fermions on a Lattice.- Finite Temperature Schwinger Model.- Interacting fermions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary particles (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-83263-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">Volume 992</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">992</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032997417</subfield></datafield></record></collection> |
id | DE-604.BV047612607 |
illustrated | Illustrated |
index_date | 2024-07-03T18:40:16Z |
indexdate | 2024-07-10T09:16:11Z |
institution | BVB |
isbn | 9783030832629 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032997417 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxiv, 554 Seiten Illustrationen, Diagramme 878 grams |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics |
spelling | Wipf, Andreas 1954- Verfasser (DE-588)1028575963 aut Statistical approach to quantum field theory an introduction Andreas Wipf Second edition Cham, Switzerland Springer [2021] xxiv, 554 Seiten Illustrationen, Diagramme 878 grams txt rdacontent n rdamedia nc rdacarrier Lecture notes in physics Volume 992 Introduction.- Path Integrals in Quantum and Statistical Mechanics.- High-Dimensional Integrals.- Monte Carlo Simulations in Quantum Mechanics.- Scalar Fields at Zero and Finite Temperature.- Classical Spin Models: An Introduction.- Mean Field Approximation.- Transfer Matrices, Correlation Inequalities and Roots of Partition Functions.- High-Temperature and Low-Temperature Expansions.- Peierls Argument and Duality Transformations.- Renormalization Group on the Lattice.- Functional Renormalization Group.- Lattice Gauge Theories.- Two-Dimensional Lattice Gauge Theories and Group Integrals.- Fermions on a Lattice.- Finite Temperature Schwinger Model.- Interacting fermions. This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory Mathematical physics Elementary particles (Physics) Quantum field theory Physics Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika Erscheint auch als Online-Ausgabe 978-3-030-83263-6 Lecture notes in physics Volume 992 (DE-604)BV000003166 992 |
spellingShingle | Wipf, Andreas 1954- Statistical approach to quantum field theory an introduction Lecture notes in physics Mathematical physics Elementary particles (Physics) Quantum field theory Physics |
title | Statistical approach to quantum field theory an introduction |
title_auth | Statistical approach to quantum field theory an introduction |
title_exact_search | Statistical approach to quantum field theory an introduction |
title_exact_search_txtP | Statistical approach to quantum field theory an introduction |
title_full | Statistical approach to quantum field theory an introduction Andreas Wipf |
title_fullStr | Statistical approach to quantum field theory an introduction Andreas Wipf |
title_full_unstemmed | Statistical approach to quantum field theory an introduction Andreas Wipf |
title_short | Statistical approach to quantum field theory |
title_sort | statistical approach to quantum field theory an introduction |
title_sub | an introduction |
topic | Mathematical physics Elementary particles (Physics) Quantum field theory Physics |
topic_facet | Mathematical physics Elementary particles (Physics) Quantum field theory Physics |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT wipfandreas statisticalapproachtoquantumfieldtheoryanintroduction |