Privacy-preserving data publishing: an overview
Privacy preservation has become a major issue in many data analysis applications. When a data set is released to other parties for data analysis, privacy-preserving techniques are often required to reduce the possibility of identifying sensitive information about individuals. For example, in medical...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[San Rafael, California]
Morgan & Claypool Publishers
[2010]
|
Schriftenreihe: | Synthesis lectures on data management
Lecture #3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Privacy preservation has become a major issue in many data analysis applications. When a data set is released to other parties for data analysis, privacy-preserving techniques are often required to reduce the possibility of identifying sensitive information about individuals. For example, in medical data, sensitive information can be the fact that a particular patient suffers from HIV. In spatial data, sensitive information can be a specific location of an individual. In web surfing data, the information that a user browses certain websites may be considered sensitive. Consider a dataset containing some sensitive information is to be released to the public. In order to protect sensitive information, the simplest solution is not to disclose the information. However, this would be an overkill since it will hinder the process of data analysis over the data from which we can find interesting patterns. Moreover, in some applications, the data must be disclosed under the government regulations. Alternatively, the data owner can first modify the data such that the modified data can guarantee privacy and, at the same time, the modified data retains sufficient utility and can be released to other parties safely. This process is usually called as privacy-preserving data publishing. In this monograph, we study how the data owner can modify the data and how the modified data can preserve privacy and protect sensitive information. Table of Contents: Introduction / Fundamental Concepts / One-Time Data Publishing / Multiple-Time Data Publishing / Graph Data / Other Data Types / Future Research Directions Intro -- Introduction -- Data Publishing -- Significance -- Organization -- Fundamental Concepts -- Anonymization -- Information Loss Metric -- Privacy Models -- Other Privacy Models -- Conclusion -- One-Time Data Publishing -- Knowledge about Quasi-identifiers -- Knowledge about the Distribution of Sensitive Values -- Knowledge about the Linkage of Individuals to Sensitive Values -- Information That Some Individuals Do Not Have Some Sensitive Values -- Information That Some Individuals Have Some Sensitive Values -- Knowledge about the Relationship among Individuals -- Knowledge about Anonymization -- Knowledge Mined from the Microdata -- Knowledge Mined from the Published Data -- How To Use Published Data -- Aggregate Queries -- Information Loss -- Evaluation with Data Mining and Data Analysis Tools -- Querying over an Uncertain Database -- Conclusion -- Multiple-Time Data Publishing -- Individual-Based Correlation -- Data publishing from Static Microdata -- Data Publishing from Dynamic Microdata -- Sensitive Value-Based Correlation -- Protection for Permanent Sensitive Values -- Protection for Transient Sensitive Values -- Conclusion -- Graph Data -- Data Model -- Adversary Attacks -- Assumption of Adversary Knowledge -- Active Attacks -- Utility of the Published Data -- k-Anonymity -- Vertex Degree -- 1-Neighborhood -- Vertex Partitioning -- k-Automorphism -- Multiple Releases of Data Graphs -- Other Approaches -- Future Directions -- Other Data Types -- Spatial Data -- With Anonymizer -- Without Anonymizer -- Transactional Data -- Conclusion -- Future Research Directions -- One-Time Data Publishing -- Multiple-Time Data Publishing -- Publishing Graph Data -- Publishing Data of Other Forms -- Definition of Entropy l-Diversity and Recursive l-Diversity -- Bibliography -- Authors' Biographies |
Beschreibung: | 1 Online-Ressource (138 Seiten) |
ISBN: | 9781608452170 |
DOI: | 10.2200/S00237ED1V01Y201003DTM002 |
Internformat
MARC
LEADER | 00000nmm a22000001cb4500 | ||
---|---|---|---|
001 | BV047575016 | ||
003 | DE-604 | ||
005 | 20211125 | ||
007 | cr|uuu---uuuuu | ||
008 | 211105s2010 |||| o||u| ||||||eng d | ||
020 | |a 9781608452170 |c ebook |9 978-1-60845-217-0 | ||
024 | 7 | |a 10.2200/S00237ED1V01Y201003DTM002 |2 doi | |
035 | |a (OCoLC)1284794631 | ||
035 | |a (DE-599)KEP029375584 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 005.8 | |
100 | 1 | |a Wong, Raymond Chi-Wing |e Verfasser |4 aut | |
245 | 1 | 0 | |a Privacy-preserving data publishing |b an overview |c Raymond Chi-Wing Wong, Ada Wai-Chee Fu |
264 | 1 | |a [San Rafael, California] |b Morgan & Claypool Publishers |c [2010] | |
264 | 4 | |c © 2010 | |
300 | |a 1 Online-Ressource (138 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Synthesis lectures on data management |v Lecture #3 | |
520 | 3 | |a Privacy preservation has become a major issue in many data analysis applications. When a data set is released to other parties for data analysis, privacy-preserving techniques are often required to reduce the possibility of identifying sensitive information about individuals. For example, in medical data, sensitive information can be the fact that a particular patient suffers from HIV. In spatial data, sensitive information can be a specific location of an individual. In web surfing data, the information that a user browses certain websites may be considered sensitive. Consider a dataset containing some sensitive information is to be released to the public. In order to protect sensitive information, the simplest solution is not to disclose the information. However, this would be an overkill since it will hinder the process of data analysis over the data from which we can find interesting patterns. Moreover, in some applications, the data must be disclosed under the government regulations. Alternatively, the data owner can first modify the data such that the modified data can guarantee privacy and, at the same time, the modified data retains sufficient utility and can be released to other parties safely. This process is usually called as privacy-preserving data publishing. In this monograph, we study how the data owner can modify the data and how the modified data can preserve privacy and protect sensitive information. Table of Contents: Introduction / Fundamental Concepts / One-Time Data Publishing / Multiple-Time Data Publishing / Graph Data / Other Data Types / Future Research Directions | |
520 | 3 | |a Intro -- Introduction -- Data Publishing -- Significance -- Organization -- Fundamental Concepts -- Anonymization -- Information Loss Metric -- Privacy Models -- Other Privacy Models -- Conclusion -- One-Time Data Publishing -- Knowledge about Quasi-identifiers -- Knowledge about the Distribution of Sensitive Values -- Knowledge about the Linkage of Individuals to Sensitive Values -- Information That Some Individuals Do Not Have Some Sensitive Values -- Information That Some Individuals Have Some Sensitive Values -- Knowledge about the Relationship among Individuals -- Knowledge about Anonymization -- Knowledge Mined from the Microdata -- Knowledge Mined from the Published Data -- How To Use Published Data -- Aggregate Queries -- Information Loss -- Evaluation with Data Mining and Data Analysis Tools -- Querying over an Uncertain Database -- Conclusion -- Multiple-Time Data Publishing -- Individual-Based Correlation -- Data publishing from Static Microdata -- Data Publishing from Dynamic Microdata -- Sensitive Value-Based Correlation -- Protection for Permanent Sensitive Values -- Protection for Transient Sensitive Values -- Conclusion -- Graph Data -- Data Model -- Adversary Attacks -- Assumption of Adversary Knowledge -- Active Attacks -- Utility of the Published Data -- k-Anonymity -- Vertex Degree -- 1-Neighborhood -- Vertex Partitioning -- k-Automorphism -- Multiple Releases of Data Graphs -- Other Approaches -- Future Directions -- Other Data Types -- Spatial Data -- With Anonymizer -- Without Anonymizer -- Transactional Data -- Conclusion -- Future Research Directions -- One-Time Data Publishing -- Multiple-Time Data Publishing -- Publishing Graph Data -- Publishing Data of Other Forms -- Definition of Entropy l-Diversity and Recursive l-Diversity -- Bibliography -- Authors' Biographies | |
650 | 0 | 7 | |a Personenbezogene Daten |0 (DE-588)4173908-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anonymisierung |0 (DE-588)4139362-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenschutz |0 (DE-588)4011134-9 |2 gnd |9 rswk-swf |
653 | 0 | |a Electronic publishing.. | |
653 | 0 | |a Piracy (Copyright) ; Prevention.. | |
653 | 0 | |a Database industry | |
653 | 0 | |a Electronic books | |
689 | 0 | 0 | |a Personenbezogene Daten |0 (DE-588)4173908-5 |D s |
689 | 0 | 1 | |a Anonymisierung |0 (DE-588)4139362-4 |D s |
689 | 0 | 2 | |a Datenschutz |0 (DE-588)4011134-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fu, Ada Wai-Chee |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-60845-216-3 |
830 | 0 | |a Synthesis lectures on data management |v Lecture #3 |w (DE-604)BV036731811 |9 3 | |
856 | 4 | 0 | |u https://doi.org/10.2200/S00237ED1V01Y201003DTM002 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-105-MCDM | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032960537 |
Datensatz im Suchindex
_version_ | 1804182923956453376 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wong, Raymond Chi-Wing Fu, Ada Wai-Chee |
author_facet | Wong, Raymond Chi-Wing Fu, Ada Wai-Chee |
author_role | aut aut |
author_sort | Wong, Raymond Chi-Wing |
author_variant | r c w w rcw rcww a w c f awc awcf |
building | Verbundindex |
bvnumber | BV047575016 |
collection | ZDB-105-MCDM |
ctrlnum | (OCoLC)1284794631 (DE-599)KEP029375584 |
dewey-full | 005.8 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.8 |
dewey-search | 005.8 |
dewey-sort | 15.8 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.2200/S00237ED1V01Y201003DTM002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05347nmm a22005171cb4500</leader><controlfield tag="001">BV047575016</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211125 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211105s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781608452170</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-60845-217-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2200/S00237ED1V01Y201003DTM002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1284794631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP029375584</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.8</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wong, Raymond Chi-Wing</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Privacy-preserving data publishing</subfield><subfield code="b">an overview</subfield><subfield code="c">Raymond Chi-Wing Wong, Ada Wai-Chee Fu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[San Rafael, California]</subfield><subfield code="b">Morgan & Claypool Publishers</subfield><subfield code="c">[2010]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (138 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on data management</subfield><subfield code="v">Lecture #3</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Privacy preservation has become a major issue in many data analysis applications. When a data set is released to other parties for data analysis, privacy-preserving techniques are often required to reduce the possibility of identifying sensitive information about individuals. For example, in medical data, sensitive information can be the fact that a particular patient suffers from HIV. In spatial data, sensitive information can be a specific location of an individual. In web surfing data, the information that a user browses certain websites may be considered sensitive. Consider a dataset containing some sensitive information is to be released to the public. In order to protect sensitive information, the simplest solution is not to disclose the information. However, this would be an overkill since it will hinder the process of data analysis over the data from which we can find interesting patterns. Moreover, in some applications, the data must be disclosed under the government regulations. Alternatively, the data owner can first modify the data such that the modified data can guarantee privacy and, at the same time, the modified data retains sufficient utility and can be released to other parties safely. This process is usually called as privacy-preserving data publishing. In this monograph, we study how the data owner can modify the data and how the modified data can preserve privacy and protect sensitive information. Table of Contents: Introduction / Fundamental Concepts / One-Time Data Publishing / Multiple-Time Data Publishing / Graph Data / Other Data Types / Future Research Directions</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Introduction -- Data Publishing -- Significance -- Organization -- Fundamental Concepts -- Anonymization -- Information Loss Metric -- Privacy Models -- Other Privacy Models -- Conclusion -- One-Time Data Publishing -- Knowledge about Quasi-identifiers -- Knowledge about the Distribution of Sensitive Values -- Knowledge about the Linkage of Individuals to Sensitive Values -- Information That Some Individuals Do Not Have Some Sensitive Values -- Information That Some Individuals Have Some Sensitive Values -- Knowledge about the Relationship among Individuals -- Knowledge about Anonymization -- Knowledge Mined from the Microdata -- Knowledge Mined from the Published Data -- How To Use Published Data -- Aggregate Queries -- Information Loss -- Evaluation with Data Mining and Data Analysis Tools -- Querying over an Uncertain Database -- Conclusion -- Multiple-Time Data Publishing -- Individual-Based Correlation -- Data publishing from Static Microdata -- Data Publishing from Dynamic Microdata -- Sensitive Value-Based Correlation -- Protection for Permanent Sensitive Values -- Protection for Transient Sensitive Values -- Conclusion -- Graph Data -- Data Model -- Adversary Attacks -- Assumption of Adversary Knowledge -- Active Attacks -- Utility of the Published Data -- k-Anonymity -- Vertex Degree -- 1-Neighborhood -- Vertex Partitioning -- k-Automorphism -- Multiple Releases of Data Graphs -- Other Approaches -- Future Directions -- Other Data Types -- Spatial Data -- With Anonymizer -- Without Anonymizer -- Transactional Data -- Conclusion -- Future Research Directions -- One-Time Data Publishing -- Multiple-Time Data Publishing -- Publishing Graph Data -- Publishing Data of Other Forms -- Definition of Entropy l-Diversity and Recursive l-Diversity -- Bibliography -- Authors' Biographies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Personenbezogene Daten</subfield><subfield code="0">(DE-588)4173908-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anonymisierung</subfield><subfield code="0">(DE-588)4139362-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenschutz</subfield><subfield code="0">(DE-588)4011134-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic publishing..</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Piracy (Copyright) ; Prevention..</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Database industry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Personenbezogene Daten</subfield><subfield code="0">(DE-588)4173908-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anonymisierung</subfield><subfield code="0">(DE-588)4139362-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenschutz</subfield><subfield code="0">(DE-588)4011134-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Ada Wai-Chee</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-60845-216-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on data management</subfield><subfield code="v">Lecture #3</subfield><subfield code="w">(DE-604)BV036731811</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2200/S00237ED1V01Y201003DTM002</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-105-MCDM</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032960537</subfield></datafield></record></collection> |
id | DE-604.BV047575016 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:31:43Z |
indexdate | 2024-07-10T09:15:16Z |
institution | BVB |
isbn | 9781608452170 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032960537 |
oclc_num | 1284794631 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (138 Seiten) |
psigel | ZDB-105-MCDM |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Morgan & Claypool Publishers |
record_format | marc |
series | Synthesis lectures on data management |
series2 | Synthesis lectures on data management |
spelling | Wong, Raymond Chi-Wing Verfasser aut Privacy-preserving data publishing an overview Raymond Chi-Wing Wong, Ada Wai-Chee Fu [San Rafael, California] Morgan & Claypool Publishers [2010] © 2010 1 Online-Ressource (138 Seiten) txt rdacontent c rdamedia cr rdacarrier Synthesis lectures on data management Lecture #3 Privacy preservation has become a major issue in many data analysis applications. When a data set is released to other parties for data analysis, privacy-preserving techniques are often required to reduce the possibility of identifying sensitive information about individuals. For example, in medical data, sensitive information can be the fact that a particular patient suffers from HIV. In spatial data, sensitive information can be a specific location of an individual. In web surfing data, the information that a user browses certain websites may be considered sensitive. Consider a dataset containing some sensitive information is to be released to the public. In order to protect sensitive information, the simplest solution is not to disclose the information. However, this would be an overkill since it will hinder the process of data analysis over the data from which we can find interesting patterns. Moreover, in some applications, the data must be disclosed under the government regulations. Alternatively, the data owner can first modify the data such that the modified data can guarantee privacy and, at the same time, the modified data retains sufficient utility and can be released to other parties safely. This process is usually called as privacy-preserving data publishing. In this monograph, we study how the data owner can modify the data and how the modified data can preserve privacy and protect sensitive information. Table of Contents: Introduction / Fundamental Concepts / One-Time Data Publishing / Multiple-Time Data Publishing / Graph Data / Other Data Types / Future Research Directions Intro -- Introduction -- Data Publishing -- Significance -- Organization -- Fundamental Concepts -- Anonymization -- Information Loss Metric -- Privacy Models -- Other Privacy Models -- Conclusion -- One-Time Data Publishing -- Knowledge about Quasi-identifiers -- Knowledge about the Distribution of Sensitive Values -- Knowledge about the Linkage of Individuals to Sensitive Values -- Information That Some Individuals Do Not Have Some Sensitive Values -- Information That Some Individuals Have Some Sensitive Values -- Knowledge about the Relationship among Individuals -- Knowledge about Anonymization -- Knowledge Mined from the Microdata -- Knowledge Mined from the Published Data -- How To Use Published Data -- Aggregate Queries -- Information Loss -- Evaluation with Data Mining and Data Analysis Tools -- Querying over an Uncertain Database -- Conclusion -- Multiple-Time Data Publishing -- Individual-Based Correlation -- Data publishing from Static Microdata -- Data Publishing from Dynamic Microdata -- Sensitive Value-Based Correlation -- Protection for Permanent Sensitive Values -- Protection for Transient Sensitive Values -- Conclusion -- Graph Data -- Data Model -- Adversary Attacks -- Assumption of Adversary Knowledge -- Active Attacks -- Utility of the Published Data -- k-Anonymity -- Vertex Degree -- 1-Neighborhood -- Vertex Partitioning -- k-Automorphism -- Multiple Releases of Data Graphs -- Other Approaches -- Future Directions -- Other Data Types -- Spatial Data -- With Anonymizer -- Without Anonymizer -- Transactional Data -- Conclusion -- Future Research Directions -- One-Time Data Publishing -- Multiple-Time Data Publishing -- Publishing Graph Data -- Publishing Data of Other Forms -- Definition of Entropy l-Diversity and Recursive l-Diversity -- Bibliography -- Authors' Biographies Personenbezogene Daten (DE-588)4173908-5 gnd rswk-swf Anonymisierung (DE-588)4139362-4 gnd rswk-swf Datenschutz (DE-588)4011134-9 gnd rswk-swf Electronic publishing.. Piracy (Copyright) ; Prevention.. Database industry Electronic books Personenbezogene Daten (DE-588)4173908-5 s Anonymisierung (DE-588)4139362-4 s Datenschutz (DE-588)4011134-9 s DE-604 Fu, Ada Wai-Chee Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-60845-216-3 Synthesis lectures on data management Lecture #3 (DE-604)BV036731811 3 https://doi.org/10.2200/S00237ED1V01Y201003DTM002 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wong, Raymond Chi-Wing Fu, Ada Wai-Chee Privacy-preserving data publishing an overview Synthesis lectures on data management Personenbezogene Daten (DE-588)4173908-5 gnd Anonymisierung (DE-588)4139362-4 gnd Datenschutz (DE-588)4011134-9 gnd |
subject_GND | (DE-588)4173908-5 (DE-588)4139362-4 (DE-588)4011134-9 |
title | Privacy-preserving data publishing an overview |
title_auth | Privacy-preserving data publishing an overview |
title_exact_search | Privacy-preserving data publishing an overview |
title_exact_search_txtP | Privacy-preserving data publishing an overview |
title_full | Privacy-preserving data publishing an overview Raymond Chi-Wing Wong, Ada Wai-Chee Fu |
title_fullStr | Privacy-preserving data publishing an overview Raymond Chi-Wing Wong, Ada Wai-Chee Fu |
title_full_unstemmed | Privacy-preserving data publishing an overview Raymond Chi-Wing Wong, Ada Wai-Chee Fu |
title_short | Privacy-preserving data publishing |
title_sort | privacy preserving data publishing an overview |
title_sub | an overview |
topic | Personenbezogene Daten (DE-588)4173908-5 gnd Anonymisierung (DE-588)4139362-4 gnd Datenschutz (DE-588)4011134-9 gnd |
topic_facet | Personenbezogene Daten Anonymisierung Datenschutz |
url | https://doi.org/10.2200/S00237ED1V01Y201003DTM002 |
volume_link | (DE-604)BV036731811 |
work_keys_str_mv | AT wongraymondchiwing privacypreservingdatapublishinganoverview AT fuadawaichee privacypreservingdatapublishinganoverview |