Investigating novel concepts for the efficient production of nylon precursors from cyclohexane:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Düren
Shaker
2021
|
Schriftenreihe: | Chemical Biotechnology
Volume 33 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 132 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 222 g |
ISBN: | 9783844082203 3844082204 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV047564718 | ||
003 | DE-604 | ||
005 | 20220216 | ||
007 | t | ||
008 | 211028s2021 gw a||| m||| 00||| eng d | ||
015 | |a 21,N35 |2 dnb | ||
016 | 7 | |a 1239751702 |2 DE-101 | |
020 | |a 9783844082203 |c : EUR 45.80 (DE), EUR 45.80 (AT), CHF 57.30 (freier Preis) |9 978-3-8440-8220-3 | ||
020 | |a 3844082204 |9 3-8440-8220-4 | ||
024 | 3 | |a 9783844082203 | |
035 | |a (OCoLC)1280484082 | ||
035 | |a (DE-599)DNB1239751702 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-83 | ||
084 | |8 1\p |a 570 |2 23sdnb | ||
100 | 1 | |a Heuschkel, Ingeborg |d 1993- |e Verfasser |0 (DE-588)1244310778 |4 aut | |
245 | 1 | 0 | |a Investigating novel concepts for the efficient production of nylon precursors from cyclohexane |c Ingeborg Heuschkel |
264 | 1 | |a Düren |b Shaker |c 2021 | |
300 | |a XV, 132 Seiten |b Illustrationen, Diagramme |c 21 cm x 14.8 cm, 222 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Chemical Biotechnology |v Volume 33 | |
502 | |b Dissertation |c Technische Universität Dresden |d 2021 | ||
650 | 0 | 7 | |a Herstellung |0 (DE-588)4159653-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biokonversion |0 (DE-588)4145610-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ausgangsmaterial |0 (DE-588)4143518-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Adipinsäure |0 (DE-588)4278605-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biofilm |0 (DE-588)4232790-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nylon |0 (DE-588)4172201-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pinus taiwanensis |0 (DE-588)4407731-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cyclohexan |0 (DE-588)4148544-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biokatalysator |0 (DE-588)4006842-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Suspensionskultur |0 (DE-588)4272660-8 |2 gnd |9 rswk-swf |
653 | |a cyclohexane | ||
653 | |a biotransformation | ||
653 | |a biocatalysis | ||
653 | |a adipic acid | ||
653 | |a photosynthesis | ||
653 | |a bioprocess development | ||
653 | |a biofilm | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Nylon |0 (DE-588)4172201-2 |D s |
689 | 0 | 1 | |a Ausgangsmaterial |0 (DE-588)4143518-7 |D s |
689 | 0 | 2 | |a Adipinsäure |0 (DE-588)4278605-8 |D s |
689 | 0 | 3 | |a Herstellung |0 (DE-588)4159653-5 |D s |
689 | 0 | 4 | |a Cyclohexan |0 (DE-588)4148544-0 |D s |
689 | 0 | 5 | |a Biokonversion |0 (DE-588)4145610-5 |D s |
689 | 0 | 6 | |a Biokatalysator |0 (DE-588)4006842-0 |D s |
689 | 0 | 7 | |a Pinus taiwanensis |0 (DE-588)4407731-2 |D s |
689 | 0 | 8 | |a Biofilm |0 (DE-588)4232790-8 |D s |
689 | 0 | 9 | |a Suspensionskultur |0 (DE-588)4272660-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Chemical Biotechnology |v Volume 33 |w (DE-604)BV026780082 |9 33 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032940096&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032940096 | ||
883 | 1 | |8 1\p |a vlb |d 20210825 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804182893375782913 |
---|---|
adam_text | CONTENTS
ACKNOWLEDGEMENTS
I
LIST
OF
FIGURES
IX
LIST
OF
TABLES
XII
LIST
OF
ABBREVIATIONS
XIII
1.
INTRODUCTION
1
1.1.
CHEMICAL
ROUTE
FOR
NYLON
MANUFACTURING
.........................................................
1
1.2.
CYCLOHEXANE
-
A
CHALLENGING
SUBSTRATE
FOR
BIOTRANSFORMATIONS
.......................
3
1.3.
BIOCATALYST
FORMAT
............................................................................................
4
1.3.1.
ENZYMATIC
CASCADES
FOR
MONOMER
PRODUCTION
FROM
CYCLOHEXANE
...
5
1.3.2.
WHOLE-CELL
BIOTRANSFORMATIONS
...............................................................
6
1.3.3.
BIOFILMS
.................................................................................................
8
1.3.3.1.
AEROBIC
HETEROTROPHIC
BIOFILM
CULTIVATION
...............................
9
1.3.3.2.
PHOTOTROPHIC
BIOFILM
CULTIVATION
AND
APPLICATIONS
OF
PHOTOBIO
CATALYSTS
.................................................................
10
1.4.
APPLICATION
OF
BIOFILMS
FOR
CATALYSIS
..................................................................
12
1.5.
BIOFILM
REACTORS
.................................................................................................
12
1.5.1.
STIRRED
TANK
BIOFILM
REACTORS
..................................................................
13
1.5.2.
FIXED-BED
REACTORS
...............................................................................
15
1.5.2.1.
PACKED
BED
REACTORS
...............................................................
15
1.5.2.2.
TRICKLE
BED
REACTORS
...............................................................
15
1.5.3.
ROTATING
DISC
REACTORS
..........................................................................
16
1.5.4.
MEMBRANE
AERATED
BIOFILM
REACTORS
......................................................
16
1.5.5.
CAPILLARY
BIOFILM
REACTORS
.....................................................................
18
1.5.6.
PHOTOTROPHIC
BIOFILM
REACTORS
...............................................................
18
1.5.6.1.
DRIP
FLOW
REACTORS
..................................................................
19
1.5.6.2.
EMERSE
PHOTOBIOREACTORS
(PBRS)
...........................................
21
1.5.6.3.
TWIN-LAYER
SOLID-STATE
PBRS
.......................................................
21
IV
1.5.6.4.
FLAT
PANEL
PBRS
........................................................................
22
1.5.6.5.
TUBULAR
PBRS
..........................................................................
23
1.6.
SCOPE
OF
THE
THESIS
.............................................................................................
24
2.
MATERIALS
AND
METHODS
25
2.1.
CHEMICALS
............................................................................................................
25
2.2.
OLIGONUCLEOTIDES,
PLASMIDS
AND
BACTERIAL
STRAINS
.................................................
25
2.3.
CULTIVATION
OF
MICROBIAL
STRAINS
IN
SHAKE
FLASKS
....................................................
27
2.3.1.
MEDIA
.......................................................................................................
27
2.3.2.
CULTIVATION
.................................................................................................
28
2.3.3.
PREPARATION
OF
MIXED-SPECIES
CULTURES
......................................................
29
2.4.
MOLECULAR
BIOLOGY
.................................................................................................
29
2.4.1.
TN7
BASED
EGFP
GENOME
INTEGRATION
......................................................
29
2.5.
RESTING
CELL
ASSAYS
IN
SHAKE
FLASKS
FOR
INITIAL
ACTIVITY
MEASUREMENTS
..............
29
2.6.
CULTIVATION
AND
BIOTRANSFORMATION
OF
SUSPENDED
P.
TAIWANENSIS
VLB120
IN
A
STIRRED
TANK
REACTOR
..............................................................................................
30
2.7.
BIOFILM
CULTIVATION
AND
BIOTRANSFORMATION
..............................................................
31
2.7.1.
DRIP
FLOW
AND
ROTATING
BED
BIOFILM
REACTOR
SETUPS
...................................
31
2.7.2.
BIOFILM
ANALYSIS
USING
CONFOCAL
LASER
SCANNING
MICROSCOPY
....................
33
2.7.3.
CAPILLARY
REACTOR
SETUPS
..........................................................................
34
2.8.
ANALYTICAL
METHODS
..............................................................................................
37
2.8.1.
O
2
QUANTIFICATION
IN
GAS
AND
LIQUID
PHASES
..............................................
37
2.8.2.
QUANTIFICATION
OF
CYCLOHEXANONE,
CYCLOHEXANOL,
AND
E-CAPROLACTONE
BY
GAS
CHROMATOGRAPHY
(GC)
........................................................................
38
2.8.3.
QUANTIFICATION
OF
E-CAPROLACTONE,
6-HYDROXYHEXANOIC
ACID,
AND
ADIPIC
ACID
USING
HIGH-PERFORMANCE
LIQUID
CHROMATOGRAPHY
(HPLC)
..............
38
2.8.4.
GLUCOSE
AND
GLUCONIC
ACID
QUANTIFICATION
.................................................
39
2.8.5.
BIOFILM
ANALYSIS
USING
SCANNING
ELECTRON
MICROSCOPY
(SEM)
..............
39
2.8.6.
CELL
QUANTIFICATION
USING
COULTER-COUNTER-BASED
CELL
COUNTING
...............
39
2.8.7.
CO
DIFFERENCE
SPECTRUM
..........................................................................
40
V
3.
RESULTS
41
3.1.
PERFORMANCE
OF
THE
BVMO
AS
AN
INDICATOR
FOR
O
2
AVAILABILITY
IN
BIOFILMS
....
41
3.2.
CONTINUOUS
PRODUCTION
OF
E-CAPROLACTONE
IN
DRIP-FLOW
AND
ROTATING
BED
REACTORS
42
3.2.1.
PRESENCE
OF
DIGUANYLATE
CYCLASE
IMPROVES
BIOFILM
GROWTH
IN
THE
DFR
.
43
3.2.2.
EARLY-STAGE
P.
TA/WANENS/S_BVMO_DGC
BIOFILM
SHOWED
HIGHER
PRO
DUCTION
RATES
THAN
EARLY-STAGE
P.
TAIWANENSIS
BX/MO
BIOFILMS
IN
DFRS
44
3.2.3.
MATURE
BIOFILMS
OF
P.
TAIWANENSIS
B /MO
SHOWED
A
SLIGHTLY
HIGHER
PRO
DUCTION
RATE
THAN
P.
FA/WANENS/S_BVMO_DGC
IN
DFRS
...............
44
3.2.4.
BVMO
STABILITY
A
KEY
ISSUE
FOR
CONTINUOUS
CYCLOHEXANONE
OXIDATION
IN
THE
RBBR
..................................................................................................
46
3.2.5.
THE
SELECTION
OF
P.
TAWANENS/S_BVMO_DGC
STRAIN
WITH
A
MODIFIED
MEDIUM
SPRAY
FEED
IMPROVED
BIOFILM
SURFACE
COVERAGE
BUT
NOT
PRO
DUCTION
RATES
............................................................................................
47
3.2.6.
OPTIMIZING
THE
CYCLOHEXANONE
FEED
TO
STABILIZE
BIOFILM
ACTIVITY
...........
48
3.3.
CONTINUOUS
PRODUCTION
OF
E-CAPROLACTONE
IN
CAPILLARY
REACTORS
..........................
51
3.3.1.
BVMO
KINETICS
IN
BIOFILMS
........................................................................
51
3.3.2.
IN
SITU
OXYGEN
SUPPLY
BY
CO-CULTIVATION
SHOWED
THREE
TIMES
HIGHER
PROD
UCT
FORMATION
COMPARED
TO
SINGLE-PHASE
FLOW
.............................
52
3.3.3.
FLUIDIC
OXYGEN
SUPPLY
BY
AIR
SEGMENTS
ENABLES
EFFICIENT
OXYGEN
TRANS
FER
AND
HIGH
PRODUCT
FORMATION
....................................................
54
3.3.4.
MIXED-SPECIES
BIOFILMS
CULTIVATED
IN
EPTFE
MEMBRANES
ARE
STABLE
AND
SHOWED
HIGH
CATALYTIC
PERFORMANCE
.................................................
55
3.4.
INITIAL
CHARACTERIZATION
OF
CYP
IN
P.
TAIWANENSIS
VLB1
20
BIOFILMS
.....................
58
3.4.1.
BIOFILMS
CAN
ADAPT
TO
CYCLOHEXANE
EXPOSURE
...........................................
58
3.4.2.
P.
TAIWANENSIS
BIOFILMS
RESULTED
IN
UNSTABLE
CYCLOHEXANE
CONVERSION
.
60
3.5.
MIXED-SPECIES
BIOFILMS
FOR
HIGH-CELL-DENSITY
CULTIVATION
OF
SYNECHOCYSTIS
...
62
3.5.1.
HIGH
OXYGEN
CONCENTRATIONS
RESULT
IN
LOW
SURFACE
COVERAGE
AND
IM
PAIRED
BIOFILM
DEVELOPMENT
.........................................................
62
3.5.2.
PSEUDOMONAS
CELLS
PROMOTE
PHOTOTROPHIC
HOD
BIOFILM
CULTIVATION
BY
SURFACE
CONDITIONING
.................................................................................
64
3.5.3.
MIXED
TROPHIES
BIOFILMS
ARE
POTENT
PHOTOAUTOTROPHIC
BIOCATALYSTS
...
67
VI
3.6.
IMPACT
OF
THE
CAPILLARY
MATERIAL
ON
GROWTH
AND
BIOCATALYTIC
PERFORMANCE
...
69
3.6.1.
HIGH
OXYGEN
AMOUNT
IMPEDES
BIOFILM
DEVELOPMENT
IN
THE
SINGLE-PHASE
MEDIUM
FLOW
CONDITIONS
..........................................................................
69
3.6.2.
AIR
SEGMENTS
RELIEVE
HIGH
OXYGEN
STRESS
BUT
FACILITATE
BIOFILM
FLUSH
OUTS
IN
GLASS
CAPILLARIES
...................................................................................
70
3.6.3.
STABLE
BIOCATALYTIC
PERFORMANCE
OF
MIXED-SPECIES
BIOFILMS
IN
BOTH
GLASS
MATERIALS
ARE
AFFECTED
BY
SLOUGHING
EVENTS
..............................................
71
3.6.4.
BIOFILM
REGROWTH
IN
BOROSILICATE
CAPILLARIES
IN
THE
PRESENCE
OF
CYCLOHEX
ANE
LEADS
TO
HIGH
PRODUCTIVITIES
...................................................
73
3.7.
ADIPIC
ACID
PRODUCTION
FROM
CYCLOHEXANE
IN
BIOFILMS
AND
STIRRED
TANK
REACTORS
75
3.7.1.
CYCLOHEXANE
FEED
ABOVE
2
MM
VIA
THE
GAS
PHASE
CAUSES
TOXIFICATION
.
75
3.7.2.
CYCLOHEXANE
SUPPLY
VIA
DIFFUSION
THROUGH
THE
EPTFE
MEMBRANE
AL
LOWED
CONTINUOUS
ADIPIC
ACID
PRODUCTION
.....................................
76
3.7.3.
ADIPIC
ACID
PRODUCTION
IN
STIRRED
TANK
BIOREACTORS
...................................
78
3.7.3.1.
CONTINUOUS
CYCLOHEXANE
FEED
TO
MINIMIZE
SUBSTRATE
LOSS
AND
PREVENT
CATALYST
TOXIFICATION
.......................................................
78
3.7.3.2.
BOOSTING
THE
INITIAL
WHOLE-CELL
ACTIVITY
BY
GENE
EXPRESSION
IN
A
NON-LIMITED
METABOLIC
STATE
.....................................................
81
4.
DISCUSSION
84
4.1.
BIOFILM
GROWTH
AND
CULTIVATION
TIME
.....................................................................
85
4.1.1.
REDUCING
PSEUDOMONAS
BIOFILM
MATURATION
TIME
BY
INTRODUCING
A
DIGUANY
LATE
CYCLASE
..................................................................................
85
4.1.2.
DEVELOPING
HIGH-CELL
DENSITY
PHOTOTROPHIC
BIOFILMS
.................................
86
4.2.
PRODUCT,
BIOCATALYST,
BIOFILM,
AND
REACTOR
MATERIAL
STABILITY
................................
87
4.2.1.
PRODUCT
DEGRADATION
AND
BYPRODUCT
FORMATION
CAN
REDUCE
THE
BIOCAT
ALYTIC
PERFORMANCE
OF
THE
BIOFILM
................................................
88
4.2.1.1.
OVERCOMING
CYCLOHEXANOL
INHIBITION
OF
BVMO
TO
STABILIZE
BIOFILM
ACTIVITY
......................................................................................
88
4.2.1.2.
PRODUCT
DEGRADATION
AS
A
KEY
CHALLENGE
FOR
EFFICIENT
BIOCATAL
YSIS
.............................................................................
89
VII
4.2.2.
BIOCATALYST
STABILITY
..................................................................................
90
4.2.2.1.
IMPROVING
BIOFILM
STABILITY
BY
CHOICE
OF
THE
REACTOR
MATERIAL
AND
A
CONCOMITANT
SHEAR
STRESS
REDUCTION
................................
91
4.2.2.2.
REDUCED
ENZYMATIC
STABILITY
OF
THE
CYP450
MONOOXYGENASE
IN
OXYGEN-LIMITED
CONDITIONS
.......................................................
92
4.2.2.3.
TUNING
THE
SUBSTRATE
FEED
TO
REDUCE
TOXICITY
EFFECTS
AND
IM
PROVE
BIOFILM
STABILITY
................................................
94
4.3.
MASS
TRANSFER
EFFECTS
.............................................................................................
96
4.3.1.
OXYGEN
MASS
TRANSFER
...............................................................................
96
4.3.2.
INTRACELLULAR
ELECTRON
FLUX
ADJUSTMENT
TO
SUPPORT
THE
BIOTRANSFORMATION
REACTIONS
..................................................................................................
97
4.3.3.
DIFFUSION
OF
OXYGEN
INTO
THE
BIOFILM
VIA
MEMBRANES
IS
HIGHLY
DEPENDENT
ON
THE
MEMBRANE
THICKNESS
.....................................................................
99
4.4.
BENCHMARKING
OF
BIOTECHNOLOGICAL
ADIPIC
ACID
PRODUCTION
.................................
101
5.
CONCLUDING
REMARKS
AND
OUTLOOK
104
A.
APPENDIX
106
BIBLIOGRAPHY
111
VIII
|
adam_txt |
CONTENTS
ACKNOWLEDGEMENTS
I
LIST
OF
FIGURES
IX
LIST
OF
TABLES
XII
LIST
OF
ABBREVIATIONS
XIII
1.
INTRODUCTION
1
1.1.
CHEMICAL
ROUTE
FOR
NYLON
MANUFACTURING
.
1
1.2.
CYCLOHEXANE
-
A
CHALLENGING
SUBSTRATE
FOR
BIOTRANSFORMATIONS
.
3
1.3.
BIOCATALYST
FORMAT
.
4
1.3.1.
ENZYMATIC
CASCADES
FOR
MONOMER
PRODUCTION
FROM
CYCLOHEXANE
.
5
1.3.2.
WHOLE-CELL
BIOTRANSFORMATIONS
.
6
1.3.3.
BIOFILMS
.
8
1.3.3.1.
AEROBIC
HETEROTROPHIC
BIOFILM
CULTIVATION
.
9
1.3.3.2.
PHOTOTROPHIC
BIOFILM
CULTIVATION
AND
APPLICATIONS
OF
PHOTOBIO
CATALYSTS
.
10
1.4.
APPLICATION
OF
BIOFILMS
FOR
CATALYSIS
.
12
1.5.
BIOFILM
REACTORS
.
12
1.5.1.
STIRRED
TANK
BIOFILM
REACTORS
.
13
1.5.2.
FIXED-BED
REACTORS
.
15
1.5.2.1.
PACKED
BED
REACTORS
.
15
1.5.2.2.
TRICKLE
BED
REACTORS
.
15
1.5.3.
ROTATING
DISC
REACTORS
.
16
1.5.4.
MEMBRANE
AERATED
BIOFILM
REACTORS
.
16
1.5.5.
CAPILLARY
BIOFILM
REACTORS
.
18
1.5.6.
PHOTOTROPHIC
BIOFILM
REACTORS
.
18
1.5.6.1.
DRIP
FLOW
REACTORS
.
19
1.5.6.2.
EMERSE
PHOTOBIOREACTORS
(PBRS)
.
21
1.5.6.3.
TWIN-LAYER
SOLID-STATE
PBRS
.
21
IV
1.5.6.4.
FLAT
PANEL
PBRS
.
22
1.5.6.5.
TUBULAR
PBRS
.
23
1.6.
SCOPE
OF
THE
THESIS
.
24
2.
MATERIALS
AND
METHODS
25
2.1.
CHEMICALS
.
25
2.2.
OLIGONUCLEOTIDES,
PLASMIDS
AND
BACTERIAL
STRAINS
.
25
2.3.
CULTIVATION
OF
MICROBIAL
STRAINS
IN
SHAKE
FLASKS
.
27
2.3.1.
MEDIA
.
27
2.3.2.
CULTIVATION
.
28
2.3.3.
PREPARATION
OF
MIXED-SPECIES
CULTURES
.
29
2.4.
MOLECULAR
BIOLOGY
.
29
2.4.1.
TN7
BASED
EGFP
GENOME
INTEGRATION
.
29
2.5.
RESTING
CELL
ASSAYS
IN
SHAKE
FLASKS
FOR
INITIAL
ACTIVITY
MEASUREMENTS
.
29
2.6.
CULTIVATION
AND
BIOTRANSFORMATION
OF
SUSPENDED
P.
TAIWANENSIS
VLB120
IN
A
STIRRED
TANK
REACTOR
.
30
2.7.
BIOFILM
CULTIVATION
AND
BIOTRANSFORMATION
.
31
2.7.1.
DRIP
FLOW
AND
ROTATING
BED
BIOFILM
REACTOR
SETUPS
.
31
2.7.2.
BIOFILM
ANALYSIS
USING
CONFOCAL
LASER
SCANNING
MICROSCOPY
.
33
2.7.3.
CAPILLARY
REACTOR
SETUPS
.
34
2.8.
ANALYTICAL
METHODS
.
37
2.8.1.
O
2
QUANTIFICATION
IN
GAS
AND
LIQUID
PHASES
.
37
2.8.2.
QUANTIFICATION
OF
CYCLOHEXANONE,
CYCLOHEXANOL,
AND
E-CAPROLACTONE
BY
GAS
CHROMATOGRAPHY
(GC)
.
38
2.8.3.
QUANTIFICATION
OF
E-CAPROLACTONE,
6-HYDROXYHEXANOIC
ACID,
AND
ADIPIC
ACID
USING
HIGH-PERFORMANCE
LIQUID
CHROMATOGRAPHY
(HPLC)
.
38
2.8.4.
GLUCOSE
AND
GLUCONIC
ACID
QUANTIFICATION
.
39
2.8.5.
BIOFILM
ANALYSIS
USING
SCANNING
ELECTRON
MICROSCOPY
(SEM)
.
39
2.8.6.
CELL
QUANTIFICATION
USING
COULTER-COUNTER-BASED
CELL
COUNTING
.
39
2.8.7.
CO
DIFFERENCE
SPECTRUM
.
40
V
3.
RESULTS
41
3.1.
PERFORMANCE
OF
THE
BVMO
AS
AN
INDICATOR
FOR
O
2
AVAILABILITY
IN
BIOFILMS
.
41
3.2.
CONTINUOUS
PRODUCTION
OF
E-CAPROLACTONE
IN
DRIP-FLOW
AND
ROTATING
BED
REACTORS
42
3.2.1.
PRESENCE
OF
DIGUANYLATE
CYCLASE
IMPROVES
BIOFILM
GROWTH
IN
THE
DFR
.
43
3.2.2.
EARLY-STAGE
P.
TA/WANENS/S_BVMO_DGC
BIOFILM
SHOWED
HIGHER
PRO
DUCTION
RATES
THAN
EARLY-STAGE
P.
TAIWANENSIS
BX/MO
BIOFILMS
IN
DFRS
44
3.2.3.
MATURE
BIOFILMS
OF
P.
TAIWANENSIS
B\/MO
SHOWED
A
SLIGHTLY
HIGHER
PRO
DUCTION
RATE
THAN
P.
FA/WANENS/S_BVMO_DGC
IN
DFRS
.
44
3.2.4.
BVMO
STABILITY
A
KEY
ISSUE
FOR
CONTINUOUS
CYCLOHEXANONE
OXIDATION
IN
THE
RBBR
.
46
3.2.5.
THE
SELECTION
OF
P.
TAWANENS/S_BVMO_DGC
STRAIN
WITH
A
MODIFIED
MEDIUM
SPRAY
FEED
IMPROVED
BIOFILM
SURFACE
COVERAGE
BUT
NOT
PRO
DUCTION
RATES
.
47
3.2.6.
OPTIMIZING
THE
CYCLOHEXANONE
FEED
TO
STABILIZE
BIOFILM
ACTIVITY
.
48
3.3.
CONTINUOUS
PRODUCTION
OF
E-CAPROLACTONE
IN
CAPILLARY
REACTORS
.
51
3.3.1.
BVMO
KINETICS
IN
BIOFILMS
.
51
3.3.2.
IN
SITU
OXYGEN
SUPPLY
BY
CO-CULTIVATION
SHOWED
THREE
TIMES
HIGHER
PROD
UCT
FORMATION
COMPARED
TO
SINGLE-PHASE
FLOW
.
52
3.3.3.
FLUIDIC
OXYGEN
SUPPLY
BY
AIR
SEGMENTS
ENABLES
EFFICIENT
OXYGEN
TRANS
FER
AND
HIGH
PRODUCT
FORMATION
.
54
3.3.4.
MIXED-SPECIES
BIOFILMS
CULTIVATED
IN
EPTFE
MEMBRANES
ARE
STABLE
AND
SHOWED
HIGH
CATALYTIC
PERFORMANCE
.
55
3.4.
INITIAL
CHARACTERIZATION
OF
CYP
IN
P.
TAIWANENSIS
VLB1
20
BIOFILMS
.
58
3.4.1.
BIOFILMS
CAN
ADAPT
TO
CYCLOHEXANE
EXPOSURE
.
58
3.4.2.
P.
TAIWANENSIS
BIOFILMS
RESULTED
IN
UNSTABLE
CYCLOHEXANE
CONVERSION
.
60
3.5.
MIXED-SPECIES
BIOFILMS
FOR
HIGH-CELL-DENSITY
CULTIVATION
OF
SYNECHOCYSTIS
.
62
3.5.1.
HIGH
OXYGEN
CONCENTRATIONS
RESULT
IN
LOW
SURFACE
COVERAGE
AND
IM
PAIRED
BIOFILM
DEVELOPMENT
.
62
3.5.2.
PSEUDOMONAS
CELLS
PROMOTE
PHOTOTROPHIC
HOD
BIOFILM
CULTIVATION
BY
SURFACE
CONDITIONING
.
64
3.5.3.
MIXED
TROPHIES
BIOFILMS
ARE
POTENT
PHOTOAUTOTROPHIC
BIOCATALYSTS
.
67
VI
3.6.
IMPACT
OF
THE
CAPILLARY
MATERIAL
ON
GROWTH
AND
BIOCATALYTIC
PERFORMANCE
.
69
3.6.1.
HIGH
OXYGEN
AMOUNT
IMPEDES
BIOFILM
DEVELOPMENT
IN
THE
SINGLE-PHASE
MEDIUM
FLOW
CONDITIONS
.
69
3.6.2.
AIR
SEGMENTS
RELIEVE
HIGH
OXYGEN
STRESS
BUT
FACILITATE
BIOFILM
FLUSH
OUTS
IN
GLASS
CAPILLARIES
.
70
3.6.3.
STABLE
BIOCATALYTIC
PERFORMANCE
OF
MIXED-SPECIES
BIOFILMS
IN
BOTH
GLASS
MATERIALS
ARE
AFFECTED
BY
SLOUGHING
EVENTS
.
71
3.6.4.
BIOFILM
REGROWTH
IN
BOROSILICATE
CAPILLARIES
IN
THE
PRESENCE
OF
CYCLOHEX
ANE
LEADS
TO
HIGH
PRODUCTIVITIES
.
73
3.7.
ADIPIC
ACID
PRODUCTION
FROM
CYCLOHEXANE
IN
BIOFILMS
AND
STIRRED
TANK
REACTORS
75
3.7.1.
CYCLOHEXANE
FEED
ABOVE
2
MM
VIA
THE
GAS
PHASE
CAUSES
TOXIFICATION
.
75
3.7.2.
CYCLOHEXANE
SUPPLY
VIA
DIFFUSION
THROUGH
THE
EPTFE
MEMBRANE
AL
LOWED
CONTINUOUS
ADIPIC
ACID
PRODUCTION
.
76
3.7.3.
ADIPIC
ACID
PRODUCTION
IN
STIRRED
TANK
BIOREACTORS
.
78
3.7.3.1.
CONTINUOUS
CYCLOHEXANE
FEED
TO
MINIMIZE
SUBSTRATE
LOSS
AND
PREVENT
CATALYST
TOXIFICATION
.
78
3.7.3.2.
BOOSTING
THE
INITIAL
WHOLE-CELL
ACTIVITY
BY
GENE
EXPRESSION
IN
A
NON-LIMITED
METABOLIC
STATE
.
81
4.
DISCUSSION
84
4.1.
BIOFILM
GROWTH
AND
CULTIVATION
TIME
.
85
4.1.1.
REDUCING
PSEUDOMONAS
BIOFILM
MATURATION
TIME
BY
INTRODUCING
A
DIGUANY
LATE
CYCLASE
.
85
4.1.2.
DEVELOPING
HIGH-CELL
DENSITY
PHOTOTROPHIC
BIOFILMS
.
86
4.2.
PRODUCT,
BIOCATALYST,
BIOFILM,
AND
REACTOR
MATERIAL
STABILITY
.
87
4.2.1.
PRODUCT
DEGRADATION
AND
BYPRODUCT
FORMATION
CAN
REDUCE
THE
BIOCAT
ALYTIC
PERFORMANCE
OF
THE
BIOFILM
.
88
4.2.1.1.
OVERCOMING
CYCLOHEXANOL
INHIBITION
OF
BVMO
TO
STABILIZE
BIOFILM
ACTIVITY
.
88
4.2.1.2.
PRODUCT
DEGRADATION
AS
A
KEY
CHALLENGE
FOR
EFFICIENT
BIOCATAL
YSIS
.
89
VII
4.2.2.
BIOCATALYST
STABILITY
.
90
4.2.2.1.
IMPROVING
BIOFILM
STABILITY
BY
CHOICE
OF
THE
REACTOR
MATERIAL
AND
A
CONCOMITANT
SHEAR
STRESS
REDUCTION
.
91
4.2.2.2.
REDUCED
ENZYMATIC
STABILITY
OF
THE
CYP450
MONOOXYGENASE
IN
OXYGEN-LIMITED
CONDITIONS
.
92
4.2.2.3.
TUNING
THE
SUBSTRATE
FEED
TO
REDUCE
TOXICITY
EFFECTS
AND
IM
PROVE
BIOFILM
STABILITY
.
94
4.3.
MASS
TRANSFER
EFFECTS
.
96
4.3.1.
OXYGEN
MASS
TRANSFER
.
96
4.3.2.
INTRACELLULAR
ELECTRON
FLUX
ADJUSTMENT
TO
SUPPORT
THE
BIOTRANSFORMATION
REACTIONS
.
97
4.3.3.
DIFFUSION
OF
OXYGEN
INTO
THE
BIOFILM
VIA
MEMBRANES
IS
HIGHLY
DEPENDENT
ON
THE
MEMBRANE
THICKNESS
.
99
4.4.
BENCHMARKING
OF
BIOTECHNOLOGICAL
ADIPIC
ACID
PRODUCTION
.
101
5.
CONCLUDING
REMARKS
AND
OUTLOOK
104
A.
APPENDIX
106
BIBLIOGRAPHY
111
VIII |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Heuschkel, Ingeborg 1993- |
author_GND | (DE-588)1244310778 |
author_facet | Heuschkel, Ingeborg 1993- |
author_role | aut |
author_sort | Heuschkel, Ingeborg 1993- |
author_variant | i h ih |
building | Verbundindex |
bvnumber | BV047564718 |
ctrlnum | (OCoLC)1280484082 (DE-599)DNB1239751702 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03056nam a22007338cb4500</leader><controlfield tag="001">BV047564718</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211028s2021 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N35</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1239751702</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783844082203</subfield><subfield code="c">: EUR 45.80 (DE), EUR 45.80 (AT), CHF 57.30 (freier Preis)</subfield><subfield code="9">978-3-8440-8220-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3844082204</subfield><subfield code="9">3-8440-8220-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783844082203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1280484082</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1239751702</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">570</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heuschkel, Ingeborg</subfield><subfield code="d">1993-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1244310778</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigating novel concepts for the efficient production of nylon precursors from cyclohexane</subfield><subfield code="c">Ingeborg Heuschkel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düren</subfield><subfield code="b">Shaker</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 132 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm x 14.8 cm, 222 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Chemical Biotechnology</subfield><subfield code="v">Volume 33</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Dresden</subfield><subfield code="d">2021</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Herstellung</subfield><subfield code="0">(DE-588)4159653-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biokonversion</subfield><subfield code="0">(DE-588)4145610-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ausgangsmaterial</subfield><subfield code="0">(DE-588)4143518-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adipinsäure</subfield><subfield code="0">(DE-588)4278605-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biofilm</subfield><subfield code="0">(DE-588)4232790-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nylon</subfield><subfield code="0">(DE-588)4172201-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pinus taiwanensis</subfield><subfield code="0">(DE-588)4407731-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cyclohexan</subfield><subfield code="0">(DE-588)4148544-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biokatalysator</subfield><subfield code="0">(DE-588)4006842-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Suspensionskultur</subfield><subfield code="0">(DE-588)4272660-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cyclohexane</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biotransformation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biocatalysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">adipic acid</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">photosynthesis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bioprocess development</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biofilm</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nylon</subfield><subfield code="0">(DE-588)4172201-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ausgangsmaterial</subfield><subfield code="0">(DE-588)4143518-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Adipinsäure</subfield><subfield code="0">(DE-588)4278605-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Herstellung</subfield><subfield code="0">(DE-588)4159653-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Cyclohexan</subfield><subfield code="0">(DE-588)4148544-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Biokonversion</subfield><subfield code="0">(DE-588)4145610-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Biokatalysator</subfield><subfield code="0">(DE-588)4006842-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Pinus taiwanensis</subfield><subfield code="0">(DE-588)4407731-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="8"><subfield code="a">Biofilm</subfield><subfield code="0">(DE-588)4232790-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="9"><subfield code="a">Suspensionskultur</subfield><subfield code="0">(DE-588)4272660-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Chemical Biotechnology</subfield><subfield code="v">Volume 33</subfield><subfield code="w">(DE-604)BV026780082</subfield><subfield code="9">33</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032940096&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032940096</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20210825</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047564718 |
illustrated | Illustrated |
index_date | 2024-07-03T18:28:16Z |
indexdate | 2024-07-10T09:14:47Z |
institution | BVB |
isbn | 9783844082203 3844082204 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032940096 |
oclc_num | 1280484082 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | XV, 132 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 222 g |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Shaker |
record_format | marc |
series | Chemical Biotechnology |
series2 | Chemical Biotechnology |
spelling | Heuschkel, Ingeborg 1993- Verfasser (DE-588)1244310778 aut Investigating novel concepts for the efficient production of nylon precursors from cyclohexane Ingeborg Heuschkel Düren Shaker 2021 XV, 132 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 222 g txt rdacontent n rdamedia nc rdacarrier Chemical Biotechnology Volume 33 Dissertation Technische Universität Dresden 2021 Herstellung (DE-588)4159653-5 gnd rswk-swf Biokonversion (DE-588)4145610-5 gnd rswk-swf Ausgangsmaterial (DE-588)4143518-7 gnd rswk-swf Adipinsäure (DE-588)4278605-8 gnd rswk-swf Biofilm (DE-588)4232790-8 gnd rswk-swf Nylon (DE-588)4172201-2 gnd rswk-swf Pinus taiwanensis (DE-588)4407731-2 gnd rswk-swf Cyclohexan (DE-588)4148544-0 gnd rswk-swf Biokatalysator (DE-588)4006842-0 gnd rswk-swf Suspensionskultur (DE-588)4272660-8 gnd rswk-swf cyclohexane biotransformation biocatalysis adipic acid photosynthesis bioprocess development biofilm (DE-588)4113937-9 Hochschulschrift gnd-content Nylon (DE-588)4172201-2 s Ausgangsmaterial (DE-588)4143518-7 s Adipinsäure (DE-588)4278605-8 s Herstellung (DE-588)4159653-5 s Cyclohexan (DE-588)4148544-0 s Biokonversion (DE-588)4145610-5 s Biokatalysator (DE-588)4006842-0 s Pinus taiwanensis (DE-588)4407731-2 s Biofilm (DE-588)4232790-8 s Suspensionskultur (DE-588)4272660-8 s DE-604 Chemical Biotechnology Volume 33 (DE-604)BV026780082 33 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032940096&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20210825 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Heuschkel, Ingeborg 1993- Investigating novel concepts for the efficient production of nylon precursors from cyclohexane Chemical Biotechnology Herstellung (DE-588)4159653-5 gnd Biokonversion (DE-588)4145610-5 gnd Ausgangsmaterial (DE-588)4143518-7 gnd Adipinsäure (DE-588)4278605-8 gnd Biofilm (DE-588)4232790-8 gnd Nylon (DE-588)4172201-2 gnd Pinus taiwanensis (DE-588)4407731-2 gnd Cyclohexan (DE-588)4148544-0 gnd Biokatalysator (DE-588)4006842-0 gnd Suspensionskultur (DE-588)4272660-8 gnd |
subject_GND | (DE-588)4159653-5 (DE-588)4145610-5 (DE-588)4143518-7 (DE-588)4278605-8 (DE-588)4232790-8 (DE-588)4172201-2 (DE-588)4407731-2 (DE-588)4148544-0 (DE-588)4006842-0 (DE-588)4272660-8 (DE-588)4113937-9 |
title | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane |
title_auth | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane |
title_exact_search | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane |
title_exact_search_txtP | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane |
title_full | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane Ingeborg Heuschkel |
title_fullStr | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane Ingeborg Heuschkel |
title_full_unstemmed | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane Ingeborg Heuschkel |
title_short | Investigating novel concepts for the efficient production of nylon precursors from cyclohexane |
title_sort | investigating novel concepts for the efficient production of nylon precursors from cyclohexane |
topic | Herstellung (DE-588)4159653-5 gnd Biokonversion (DE-588)4145610-5 gnd Ausgangsmaterial (DE-588)4143518-7 gnd Adipinsäure (DE-588)4278605-8 gnd Biofilm (DE-588)4232790-8 gnd Nylon (DE-588)4172201-2 gnd Pinus taiwanensis (DE-588)4407731-2 gnd Cyclohexan (DE-588)4148544-0 gnd Biokatalysator (DE-588)4006842-0 gnd Suspensionskultur (DE-588)4272660-8 gnd |
topic_facet | Herstellung Biokonversion Ausgangsmaterial Adipinsäure Biofilm Nylon Pinus taiwanensis Cyclohexan Biokatalysator Suspensionskultur Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032940096&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV026780082 |
work_keys_str_mv | AT heuschkelingeborg investigatingnovelconceptsfortheefficientproductionofnylonprecursorsfromcyclohexane |