Linear groups: the accent on infinite dimensionality
Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press, Taylor & Francis Group
[2020]
|
Schriftenreihe: | Monographs and research notes in mathematics
A Chapman & Hall book |
Schlagworte: | |
Zusammenfassung: | Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results |
Beschreibung: | Includes bibliographical references and indexes |
Beschreibung: | xiii, 314 Seiten |
ISBN: | 9781138542808 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047559976 | ||
003 | DE-604 | ||
005 | 20220311 | ||
007 | t | ||
008 | 211026s2020 xxu |||| 00||| eng d | ||
020 | |a 9781138542808 |c hardback |9 978-1-138-54280-8 | ||
035 | |a (OCoLC)1164399497 | ||
035 | |a (DE-599)KXP1703293258 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-634 | ||
050 | 0 | |a QA252.3 | |
082 | 0 | |a 512/.482 | |
100 | 1 | |a Dixon, Martyn R. |d 1955- |e Verfasser |0 (DE-588)142483885 |4 aut | |
245 | 1 | 0 | |a Linear groups |b the accent on infinite dimensionality |c Martyn R. Dixon (University of Alabama), Leonid A. Kurdachenko (Oles Honchar Dnipro National University), Igor Ya. Subbotin (Sanford National University) |
264 | 1 | |a Boca Raton |b CRC Press, Taylor & Francis Group |c [2020] | |
300 | |a xiii, 314 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Monographs and research notes in mathematics | |
490 | 0 | |a A Chapman & Hall book | |
500 | |a Includes bibliographical references and indexes | ||
520 | 3 | |a Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results | |
650 | 0 | 7 | |a Lineare Gruppe |0 (DE-588)4138778-8 |2 gnd |9 rswk-swf |
653 | 0 | |a Infinite dimensional Lie algebras | |
653 | 0 | |a MATHEMATICS / Algebra / General | |
653 | 0 | |a MATHEMATICS / Geometry / General | |
653 | 0 | |a Infinite dimensional Lie algebras | |
689 | 0 | 0 | |a Lineare Gruppe |0 (DE-588)4138778-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kurdachenko, Leonid A. |d 1949- |e Verfasser |0 (DE-588)132278138 |4 aut | |
700 | 1 | |a Subbotin, Igor Ya. |d 1950- |e Verfasser |0 (DE-588)132278170 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-351-00804-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-1-351-00803-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-351-00802-0 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032935433 |
Datensatz im Suchindex
_version_ | 1804182886299992064 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dixon, Martyn R. 1955- Kurdachenko, Leonid A. 1949- Subbotin, Igor Ya. 1950- |
author_GND | (DE-588)142483885 (DE-588)132278138 (DE-588)132278170 |
author_facet | Dixon, Martyn R. 1955- Kurdachenko, Leonid A. 1949- Subbotin, Igor Ya. 1950- |
author_role | aut aut aut |
author_sort | Dixon, Martyn R. 1955- |
author_variant | m r d mr mrd l a k la lak i y s iy iys |
building | Verbundindex |
bvnumber | BV047559976 |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 |
callnumber-search | QA252.3 |
callnumber-sort | QA 3252.3 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)1164399497 (DE-599)KXP1703293258 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03216nam a2200481 c 4500</leader><controlfield tag="001">BV047559976</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220311 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">211026s2020 xxu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138542808</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-138-54280-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164399497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1703293258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA252.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dixon, Martyn R.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142483885</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear groups</subfield><subfield code="b">the accent on infinite dimensionality</subfield><subfield code="c">Martyn R. Dixon (University of Alabama), Leonid A. Kurdachenko (Oles Honchar Dnipro National University), Igor Ya. Subbotin (Sanford National University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 314 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs and research notes in mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman & Hall book</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infinite dimensional Lie algebras</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Algebra / General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Geometry / General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infinite dimensional Lie algebras</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Gruppe</subfield><subfield code="0">(DE-588)4138778-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurdachenko, Leonid A.</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132278138</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subbotin, Igor Ya.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132278170</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-351-00804-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-351-00803-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-351-00802-0</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032935433</subfield></datafield></record></collection> |
id | DE-604.BV047559976 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:27:09Z |
indexdate | 2024-07-10T09:14:40Z |
institution | BVB |
isbn | 9781138542808 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032935433 |
oclc_num | 1164399497 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | xiii, 314 Seiten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Monographs and research notes in mathematics A Chapman & Hall book |
spelling | Dixon, Martyn R. 1955- Verfasser (DE-588)142483885 aut Linear groups the accent on infinite dimensionality Martyn R. Dixon (University of Alabama), Leonid A. Kurdachenko (Oles Honchar Dnipro National University), Igor Ya. Subbotin (Sanford National University) Boca Raton CRC Press, Taylor & Francis Group [2020] xiii, 314 Seiten txt rdacontent n rdamedia nc rdacarrier Monographs and research notes in mathematics A Chapman & Hall book Includes bibliographical references and indexes Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results Lineare Gruppe (DE-588)4138778-8 gnd rswk-swf Infinite dimensional Lie algebras MATHEMATICS / Algebra / General MATHEMATICS / Geometry / General Lineare Gruppe (DE-588)4138778-8 s DE-604 Kurdachenko, Leonid A. 1949- Verfasser (DE-588)132278138 aut Subbotin, Igor Ya. 1950- Verfasser (DE-588)132278170 aut Erscheint auch als Online-Ausgabe 978-1-351-00804-4 Erscheint auch als Online-Ausgabe, PDF 978-1-351-00803-7 Erscheint auch als Online-Ausgabe, EPUB 978-1-351-00802-0 |
spellingShingle | Dixon, Martyn R. 1955- Kurdachenko, Leonid A. 1949- Subbotin, Igor Ya. 1950- Linear groups the accent on infinite dimensionality Lineare Gruppe (DE-588)4138778-8 gnd |
subject_GND | (DE-588)4138778-8 |
title | Linear groups the accent on infinite dimensionality |
title_auth | Linear groups the accent on infinite dimensionality |
title_exact_search | Linear groups the accent on infinite dimensionality |
title_exact_search_txtP | Linear groups the accent on infinite dimensionality |
title_full | Linear groups the accent on infinite dimensionality Martyn R. Dixon (University of Alabama), Leonid A. Kurdachenko (Oles Honchar Dnipro National University), Igor Ya. Subbotin (Sanford National University) |
title_fullStr | Linear groups the accent on infinite dimensionality Martyn R. Dixon (University of Alabama), Leonid A. Kurdachenko (Oles Honchar Dnipro National University), Igor Ya. Subbotin (Sanford National University) |
title_full_unstemmed | Linear groups the accent on infinite dimensionality Martyn R. Dixon (University of Alabama), Leonid A. Kurdachenko (Oles Honchar Dnipro National University), Igor Ya. Subbotin (Sanford National University) |
title_short | Linear groups |
title_sort | linear groups the accent on infinite dimensionality |
title_sub | the accent on infinite dimensionality |
topic | Lineare Gruppe (DE-588)4138778-8 gnd |
topic_facet | Lineare Gruppe |
work_keys_str_mv | AT dixonmartynr lineargroupstheaccentoninfinitedimensionality AT kurdachenkoleonida lineargroupstheaccentoninfinitedimensionality AT subbotinigorya lineargroupstheaccentoninfinitedimensionality |