Advanced multifunctional lightweight aerostructures: design, development, and implementation
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[New York, NY, USA]
ASME Press
[2021]
Hoboken, NJ, USA Wiley |
Schriftenreihe: | Wiley-ASME Press series
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9781119756736 9781119756729 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442741 | ||
003 | DE-604 | ||
005 | 20240214 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119756736 |c EPUB |9 978-1-119-75673-6 | ||
020 | |a 9781119756729 |c PDF |9 978-1-119-75672-9 | ||
035 | |a (ZDB-30-PQE)EBC6466102 | ||
035 | |a (ZDB-30-PAD)EBC6466102 | ||
035 | |a (ZDB-89-EBL)EBL6466102 | ||
035 | |a (OCoLC)1236267403 | ||
035 | |a (DE-599)BVBBV047442741 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 629.1341 | |
084 | |a VER 600 |2 stub | ||
084 | |a MTA 170 |2 stub | ||
100 | 1 | |a Behdinan, Kamran |d 1961- |e Verfasser |0 (DE-588)1249083133 |4 aut | |
245 | 1 | 0 | |a Advanced multifunctional lightweight aerostructures |b design, development, and implementation |c Kamran Behdinan and Rasool Moradi-Dastjerdi |
264 | 1 | |a [New York, NY, USA] |b ASME Press |c [2021] | |
264 | 1 | |a Hoboken, NJ, USA |b Wiley | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley-ASME Press series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Biographies -- Part I Multi‐Disciplinary Modeling and Characterization -- Chapter 1 Layer Arrangement Impact on the Electromechanical Performance of a Five‐Layer Multifunctional Smart Sandwich Plate -- 1.1 Introduction -- 1.2 Modeling of 5LMSSP -- 1.2.1 Porous Layer -- 1.2.2 Nanocomposite Layers -- 1.2.3 Governing Equations -- 1.3 Mesh‐Free Solution -- 1.3.1 MLS Shape Function -- 1.3.2 Discretization of Domain -- 1.3.3 Essential Boundary Conditions (Mechanical Supports) -- 1.4 Numerical Results -- 1.4.1 Validation -- 1.4.2 Static Deflections in 5LMSSPs -- 1.5 Conclusions -- References -- Chapter 2 Heat Transfer Behavior of Graphene‐Reinforced Nanocomposite Sandwich Cylinders -- 2.1 Introduction -- 2.2 Modeling of Sandwich Cylinders -- 2.2.1 Dispersion of Graphene Sheets -- 2.2.2 Thermal Properties -- 2.2.3 Governing Thermal Equations -- 2.3 Mesh‐Free Formulations -- 2.4 Results and Discussion -- 2.4.1 Thermal Conductivity of Graphene/PE Nanocomposite -- 2.4.2 Verification -- 2.4.3 Heat Transfer Response -- 2.5 Conclusions -- References -- Chapter 3 Multiscale Methods for Lightweight Structure and Material Characterization -- 3.1 Introduction -- 3.2 Overview of Multiscale Methodologies and Applications -- 3.2.1 Hierarchical Methods -- 3.2.2 Concurrent Methods -- 3.3 Bridging Cell Method -- 3.4 Applications -- 3.4.1 Crack Propagation in Nickel Single Crystals -- 3.4.2 Aluminum-Carbon Nanotube Nanocomposite -- 3.4.3 Ceramic Composites -- 3.5 Multiscale Modeling of Lightweight Composites -- 3.5.1 Nano to Microscale: BCM -- 3.5.2 Micro to Macroscale: Cohesive Zone Modeling -- 3.6 Conclusion -- References -- Chapter 4 Characterization of Ultra‐High Temperature and Polymorphic Ceramics -- 4.1 Introduction -- 4.2 Crystalline Characterization of UHTCs | |
505 | 8 | |a 4.3 Chemical Characterization of a UHTC Composite -- 4.4 Polymeric Ceramic Crystalline Characterization -- 4.5 Multiscale Characterization of the Anatase-Rutile Transformation -- 4.6 Conclusion -- References -- Part II Multifunctional Lightweight Aerostructure Applications -- Chapter 5 Design Optimization of Multifunctional Aerospace Structures -- 5.1 Introduction -- 5.2 Multifunctional Structures -- 5.3 Computational Design and Optimization -- 5.4 Applications -- 5.4.1 Design Optimization of a Novel NLG Shimmy Damper -- 5.5 Conclusions -- References -- Chapter 6 Dynamic Modeling and Analysis of Nonlinear Flexible Rotors Supported by Viscoelastic Bearings -- 6.1 Introduction -- 6.2 Dynamic Modeling -- 6.2.1 Equations of Motion and Method of Solution -- 6.2.2 Force Transmissibility -- 6.2.3 Method of Solution -- 6.3 Free Vibration Characteristics -- 6.4 Nonlinear Frequency Response -- 6.5 Conclusions -- References -- Chapter 7 Modeling and Experimentation of Temperature Calculations for Belt Drive Transmission Systems in the Aviation Industry -- 7.1 Introduction -- 7.2 Analytical-Numerical Thermal Model -- 7.2.1 Creation of the Analytical Thermal Model -- 7.2.2 Belt Thermal Analysis -- 7.2.3 Heat Exchange at the Pulley-Belt Contact Surfaces -- 7.2.4 Pulley Internal Thermal Analysis -- 7.2.4.1 Mathematical Algorithm -- 7.2.4.2 Numerical Method -- 7.2.5 Overall Structure -- 7.3 Experimental Setup -- 7.3.1 Operating Conditions -- 7.3.2 Belt Drive Layout -- 7.3.3 Equipment Setup -- 7.4 Results and Discussion -- 7.4.1 Verification of the Belt's Uniform Temperature -- 7.4.2 Verification of Curve of En(ωpn) -- 7.4.3 Model Verification -- 7.4.4 Temperature Plot Verification -- 7.5 Conclusion -- References -- Chapter 8 An Efficient Far‐Field Noise Prediction Framework for the Next Generation of Aircraft Landing Gear Designs -- 8.1 Introduction and Background | |
505 | 8 | |a 8.1.1 Numerical Landing Gear Aeroacoustics -- 8.1.2 Problem Statement -- 8.2 Modeling and Numerical Method -- 8.2.1 Hybrid Computational Aeroacoustic Method -- 8.2.2 Near‐Field Flow Numerical Method -- 8.2.3 Far‐Field Acoustic Numerical Method -- 8.2.3.1 Acoustic Analogies Formulation -- 8.2.3.2 Ffowcs Williams and Hawkings Equation -- 8.2.4 The Motivation of the Multiple Two‐Dimensional Simulations Method -- 8.2.5 New Approach for Noise Calculation at the Far‐Field of LG -- 8.3 Implementation of the Multiple Two‐Dimensional Simulations Method -- 8.3.1 2D CFD Setup -- 8.3.2 Computation of Acoustic at Far‐Field -- 8.4 Results and Discussion -- 8.4.1 The Effects of the Receiver Locations -- 8.4.2 The Effects of the Acoustic Source -- 8.4.3 The LAGOON NLG Overall Far‐Field Acoustic Results -- 8.5 Summary and Conclusions -- References -- Chapter 9 Vibration Transfer Path Analysis of Aeroengines Using Bond Graph Theory -- 9.1 Introduction -- 9.2 Overview of TPA Methodologies -- 9.2.1 Measuring Interface Loads Using the Classical TPA Approach -- 9.2.1.1 Mount Stiffness Measurement Technique -- 9.2.1.2 Matrix Inversion Method -- 9.2.2 Operational Path Analysis -- 9.2.2.1 OPA Theory -- 9.2.3 OPAX Method -- 9.2.4 Global Transfer Direct Transfer TPA Method -- 9.2.5 Bond Graph TPA Method -- 9.3 Bond Graph Formulation -- 9.3.1 Developing Bond Graphs -- 9.4 Bond Graph Modeling of an Aeroengine -- 9.4.1 Reduced Aeroengine Model -- 9.4.2 Aeroengine Bond Graph -- 9.4.3 State Space Equation of the Reduced Aeroengine -- 9.4.4 Sample Calculation: Output and Direct Transmissibility Matrices -- 9.5 Transmissibility Principle -- 9.6 Bond Graph Transfer Function -- 9.7 Aeroengine Global Transmissibility Formulation -- 9.8 Design Guidelines to Minimize Vibration Transfer -- 9.9 Conclusion -- References | |
505 | 8 | |a Chapter 10 Structural Health Monitoring of Aeroengines Using Transmissibility and Bond Graph Methodology -- 10.1 Introduction -- 10.2 Fundamentals of Transmissibility Functions -- 10.3 Bond Graphs -- 10.3.1 Bond Graph Theory -- 10.3.2 Graphical Representation and Modeling of Bond Graphs -- 10.3.3 Determination of State‐Space Equations Using Bond Graph Theory -- 10.3.4 Determination of Transmissibility Functions Using the Bond Graph Concept -- 10.4 Structural Health Monitoring Damage Indicator Factors -- 10.5 Aircraft Aeroengine Parametric Modeling -- 10.6 Results and Discussion -- 10.7 Conclusion -- References -- Index -- EULA. | |
650 | 4 | |a Airplanes-Design and construction.. | |
650 | 4 | |a Lightweight construction.. | |
650 | 4 | |a Aerospace engineering | |
700 | 1 | |a Moradi-Dastjerdi, Rasool |d 1984- |e Verfasser |0 (DE-588)1249083583 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Behdinan, Kamran |t Advanced Multifunctional Lightweight Aerostructures |d Newark : John Wiley & Sons, Incorporated,c2021 |n Druck-Ausgabe, Hardcover |z 978-1-119-75671-2 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844893 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6466102 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182735042904064 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Behdinan, Kamran 1961- Moradi-Dastjerdi, Rasool 1984- |
author_GND | (DE-588)1249083133 (DE-588)1249083583 |
author_facet | Behdinan, Kamran 1961- Moradi-Dastjerdi, Rasool 1984- |
author_role | aut aut |
author_sort | Behdinan, Kamran 1961- |
author_variant | k b kb r m d rmd |
building | Verbundindex |
bvnumber | BV047442741 |
classification_tum | VER 600 MTA 170 |
collection | ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright -- Contents -- Preface -- Biographies -- Part I Multi‐Disciplinary Modeling and Characterization -- Chapter 1 Layer Arrangement Impact on the Electromechanical Performance of a Five‐Layer Multifunctional Smart Sandwich Plate -- 1.1 Introduction -- 1.2 Modeling of 5LMSSP -- 1.2.1 Porous Layer -- 1.2.2 Nanocomposite Layers -- 1.2.3 Governing Equations -- 1.3 Mesh‐Free Solution -- 1.3.1 MLS Shape Function -- 1.3.2 Discretization of Domain -- 1.3.3 Essential Boundary Conditions (Mechanical Supports) -- 1.4 Numerical Results -- 1.4.1 Validation -- 1.4.2 Static Deflections in 5LMSSPs -- 1.5 Conclusions -- References -- Chapter 2 Heat Transfer Behavior of Graphene‐Reinforced Nanocomposite Sandwich Cylinders -- 2.1 Introduction -- 2.2 Modeling of Sandwich Cylinders -- 2.2.1 Dispersion of Graphene Sheets -- 2.2.2 Thermal Properties -- 2.2.3 Governing Thermal Equations -- 2.3 Mesh‐Free Formulations -- 2.4 Results and Discussion -- 2.4.1 Thermal Conductivity of Graphene/PE Nanocomposite -- 2.4.2 Verification -- 2.4.3 Heat Transfer Response -- 2.5 Conclusions -- References -- Chapter 3 Multiscale Methods for Lightweight Structure and Material Characterization -- 3.1 Introduction -- 3.2 Overview of Multiscale Methodologies and Applications -- 3.2.1 Hierarchical Methods -- 3.2.2 Concurrent Methods -- 3.3 Bridging Cell Method -- 3.4 Applications -- 3.4.1 Crack Propagation in Nickel Single Crystals -- 3.4.2 Aluminum-Carbon Nanotube Nanocomposite -- 3.4.3 Ceramic Composites -- 3.5 Multiscale Modeling of Lightweight Composites -- 3.5.1 Nano to Microscale: BCM -- 3.5.2 Micro to Macroscale: Cohesive Zone Modeling -- 3.6 Conclusion -- References -- Chapter 4 Characterization of Ultra‐High Temperature and Polymorphic Ceramics -- 4.1 Introduction -- 4.2 Crystalline Characterization of UHTCs 4.3 Chemical Characterization of a UHTC Composite -- 4.4 Polymeric Ceramic Crystalline Characterization -- 4.5 Multiscale Characterization of the Anatase-Rutile Transformation -- 4.6 Conclusion -- References -- Part II Multifunctional Lightweight Aerostructure Applications -- Chapter 5 Design Optimization of Multifunctional Aerospace Structures -- 5.1 Introduction -- 5.2 Multifunctional Structures -- 5.3 Computational Design and Optimization -- 5.4 Applications -- 5.4.1 Design Optimization of a Novel NLG Shimmy Damper -- 5.5 Conclusions -- References -- Chapter 6 Dynamic Modeling and Analysis of Nonlinear Flexible Rotors Supported by Viscoelastic Bearings -- 6.1 Introduction -- 6.2 Dynamic Modeling -- 6.2.1 Equations of Motion and Method of Solution -- 6.2.2 Force Transmissibility -- 6.2.3 Method of Solution -- 6.3 Free Vibration Characteristics -- 6.4 Nonlinear Frequency Response -- 6.5 Conclusions -- References -- Chapter 7 Modeling and Experimentation of Temperature Calculations for Belt Drive Transmission Systems in the Aviation Industry -- 7.1 Introduction -- 7.2 Analytical-Numerical Thermal Model -- 7.2.1 Creation of the Analytical Thermal Model -- 7.2.2 Belt Thermal Analysis -- 7.2.3 Heat Exchange at the Pulley-Belt Contact Surfaces -- 7.2.4 Pulley Internal Thermal Analysis -- 7.2.4.1 Mathematical Algorithm -- 7.2.4.2 Numerical Method -- 7.2.5 Overall Structure -- 7.3 Experimental Setup -- 7.3.1 Operating Conditions -- 7.3.2 Belt Drive Layout -- 7.3.3 Equipment Setup -- 7.4 Results and Discussion -- 7.4.1 Verification of the Belt's Uniform Temperature -- 7.4.2 Verification of Curve of En(ωpn) -- 7.4.3 Model Verification -- 7.4.4 Temperature Plot Verification -- 7.5 Conclusion -- References -- Chapter 8 An Efficient Far‐Field Noise Prediction Framework for the Next Generation of Aircraft Landing Gear Designs -- 8.1 Introduction and Background 8.1.1 Numerical Landing Gear Aeroacoustics -- 8.1.2 Problem Statement -- 8.2 Modeling and Numerical Method -- 8.2.1 Hybrid Computational Aeroacoustic Method -- 8.2.2 Near‐Field Flow Numerical Method -- 8.2.3 Far‐Field Acoustic Numerical Method -- 8.2.3.1 Acoustic Analogies Formulation -- 8.2.3.2 Ffowcs Williams and Hawkings Equation -- 8.2.4 The Motivation of the Multiple Two‐Dimensional Simulations Method -- 8.2.5 New Approach for Noise Calculation at the Far‐Field of LG -- 8.3 Implementation of the Multiple Two‐Dimensional Simulations Method -- 8.3.1 2D CFD Setup -- 8.3.2 Computation of Acoustic at Far‐Field -- 8.4 Results and Discussion -- 8.4.1 The Effects of the Receiver Locations -- 8.4.2 The Effects of the Acoustic Source -- 8.4.3 The LAGOON NLG Overall Far‐Field Acoustic Results -- 8.5 Summary and Conclusions -- References -- Chapter 9 Vibration Transfer Path Analysis of Aeroengines Using Bond Graph Theory -- 9.1 Introduction -- 9.2 Overview of TPA Methodologies -- 9.2.1 Measuring Interface Loads Using the Classical TPA Approach -- 9.2.1.1 Mount Stiffness Measurement Technique -- 9.2.1.2 Matrix Inversion Method -- 9.2.2 Operational Path Analysis -- 9.2.2.1 OPA Theory -- 9.2.3 OPAX Method -- 9.2.4 Global Transfer Direct Transfer TPA Method -- 9.2.5 Bond Graph TPA Method -- 9.3 Bond Graph Formulation -- 9.3.1 Developing Bond Graphs -- 9.4 Bond Graph Modeling of an Aeroengine -- 9.4.1 Reduced Aeroengine Model -- 9.4.2 Aeroengine Bond Graph -- 9.4.3 State Space Equation of the Reduced Aeroengine -- 9.4.4 Sample Calculation: Output and Direct Transmissibility Matrices -- 9.5 Transmissibility Principle -- 9.6 Bond Graph Transfer Function -- 9.7 Aeroengine Global Transmissibility Formulation -- 9.8 Design Guidelines to Minimize Vibration Transfer -- 9.9 Conclusion -- References Chapter 10 Structural Health Monitoring of Aeroengines Using Transmissibility and Bond Graph Methodology -- 10.1 Introduction -- 10.2 Fundamentals of Transmissibility Functions -- 10.3 Bond Graphs -- 10.3.1 Bond Graph Theory -- 10.3.2 Graphical Representation and Modeling of Bond Graphs -- 10.3.3 Determination of State‐Space Equations Using Bond Graph Theory -- 10.3.4 Determination of Transmissibility Functions Using the Bond Graph Concept -- 10.4 Structural Health Monitoring Damage Indicator Factors -- 10.5 Aircraft Aeroengine Parametric Modeling -- 10.6 Results and Discussion -- 10.7 Conclusion -- References -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC6466102 (ZDB-30-PAD)EBC6466102 (ZDB-89-EBL)EBL6466102 (OCoLC)1236267403 (DE-599)BVBBV047442741 |
dewey-full | 629.1341 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.1341 |
dewey-search | 629.1341 |
dewey-sort | 3629.1341 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Verkehrstechnik Verkehr / Transport |
discipline_str_mv | Physik Verkehrstechnik Verkehr / Transport |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08166nmm a2200517zc 4500</leader><controlfield tag="001">BV047442741</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119756736</subfield><subfield code="c">EPUB</subfield><subfield code="9">978-1-119-75673-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119756729</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-119-75672-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6466102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6466102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6466102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1236267403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.1341</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 600</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 170</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Behdinan, Kamran</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1249083133</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced multifunctional lightweight aerostructures</subfield><subfield code="b">design, development, and implementation</subfield><subfield code="c">Kamran Behdinan and Rasool Moradi-Dastjerdi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New York, NY, USA]</subfield><subfield code="b">ASME Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ, USA</subfield><subfield code="b">Wiley</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley-ASME Press series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Preface -- Biographies -- Part I Multi‐Disciplinary Modeling and Characterization -- Chapter 1 Layer Arrangement Impact on the Electromechanical Performance of a Five‐Layer Multifunctional Smart Sandwich Plate -- 1.1 Introduction -- 1.2 Modeling of 5LMSSP -- 1.2.1 Porous Layer -- 1.2.2 Nanocomposite Layers -- 1.2.3 Governing Equations -- 1.3 Mesh‐Free Solution -- 1.3.1 MLS Shape Function -- 1.3.2 Discretization of Domain -- 1.3.3 Essential Boundary Conditions (Mechanical Supports) -- 1.4 Numerical Results -- 1.4.1 Validation -- 1.4.2 Static Deflections in 5LMSSPs -- 1.5 Conclusions -- References -- Chapter 2 Heat Transfer Behavior of Graphene‐Reinforced Nanocomposite Sandwich Cylinders -- 2.1 Introduction -- 2.2 Modeling of Sandwich Cylinders -- 2.2.1 Dispersion of Graphene Sheets -- 2.2.2 Thermal Properties -- 2.2.3 Governing Thermal Equations -- 2.3 Mesh‐Free Formulations -- 2.4 Results and Discussion -- 2.4.1 Thermal Conductivity of Graphene/PE Nanocomposite -- 2.4.2 Verification -- 2.4.3 Heat Transfer Response -- 2.5 Conclusions -- References -- Chapter 3 Multiscale Methods for Lightweight Structure and Material Characterization -- 3.1 Introduction -- 3.2 Overview of Multiscale Methodologies and Applications -- 3.2.1 Hierarchical Methods -- 3.2.2 Concurrent Methods -- 3.3 Bridging Cell Method -- 3.4 Applications -- 3.4.1 Crack Propagation in Nickel Single Crystals -- 3.4.2 Aluminum-Carbon Nanotube Nanocomposite -- 3.4.3 Ceramic Composites -- 3.5 Multiscale Modeling of Lightweight Composites -- 3.5.1 Nano to Microscale: BCM -- 3.5.2 Micro to Macroscale: Cohesive Zone Modeling -- 3.6 Conclusion -- References -- Chapter 4 Characterization of Ultra‐High Temperature and Polymorphic Ceramics -- 4.1 Introduction -- 4.2 Crystalline Characterization of UHTCs</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3 Chemical Characterization of a UHTC Composite -- 4.4 Polymeric Ceramic Crystalline Characterization -- 4.5 Multiscale Characterization of the Anatase-Rutile Transformation -- 4.6 Conclusion -- References -- Part II Multifunctional Lightweight Aerostructure Applications -- Chapter 5 Design Optimization of Multifunctional Aerospace Structures -- 5.1 Introduction -- 5.2 Multifunctional Structures -- 5.3 Computational Design and Optimization -- 5.4 Applications -- 5.4.1 Design Optimization of a Novel NLG Shimmy Damper -- 5.5 Conclusions -- References -- Chapter 6 Dynamic Modeling and Analysis of Nonlinear Flexible Rotors Supported by Viscoelastic Bearings -- 6.1 Introduction -- 6.2 Dynamic Modeling -- 6.2.1 Equations of Motion and Method of Solution -- 6.2.2 Force Transmissibility -- 6.2.3 Method of Solution -- 6.3 Free Vibration Characteristics -- 6.4 Nonlinear Frequency Response -- 6.5 Conclusions -- References -- Chapter 7 Modeling and Experimentation of Temperature Calculations for Belt Drive Transmission Systems in the Aviation Industry -- 7.1 Introduction -- 7.2 Analytical-Numerical Thermal Model -- 7.2.1 Creation of the Analytical Thermal Model -- 7.2.2 Belt Thermal Analysis -- 7.2.3 Heat Exchange at the Pulley-Belt Contact Surfaces -- 7.2.4 Pulley Internal Thermal Analysis -- 7.2.4.1 Mathematical Algorithm -- 7.2.4.2 Numerical Method -- 7.2.5 Overall Structure -- 7.3 Experimental Setup -- 7.3.1 Operating Conditions -- 7.3.2 Belt Drive Layout -- 7.3.3 Equipment Setup -- 7.4 Results and Discussion -- 7.4.1 Verification of the Belt's Uniform Temperature -- 7.4.2 Verification of Curve of En(ωpn) -- 7.4.3 Model Verification -- 7.4.4 Temperature Plot Verification -- 7.5 Conclusion -- References -- Chapter 8 An Efficient Far‐Field Noise Prediction Framework for the Next Generation of Aircraft Landing Gear Designs -- 8.1 Introduction and Background</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.1.1 Numerical Landing Gear Aeroacoustics -- 8.1.2 Problem Statement -- 8.2 Modeling and Numerical Method -- 8.2.1 Hybrid Computational Aeroacoustic Method -- 8.2.2 Near‐Field Flow Numerical Method -- 8.2.3 Far‐Field Acoustic Numerical Method -- 8.2.3.1 Acoustic Analogies Formulation -- 8.2.3.2 Ffowcs Williams and Hawkings Equation -- 8.2.4 The Motivation of the Multiple Two‐Dimensional Simulations Method -- 8.2.5 New Approach for Noise Calculation at the Far‐Field of LG -- 8.3 Implementation of the Multiple Two‐Dimensional Simulations Method -- 8.3.1 2D CFD Setup -- 8.3.2 Computation of Acoustic at Far‐Field -- 8.4 Results and Discussion -- 8.4.1 The Effects of the Receiver Locations -- 8.4.2 The Effects of the Acoustic Source -- 8.4.3 The LAGOON NLG Overall Far‐Field Acoustic Results -- 8.5 Summary and Conclusions -- References -- Chapter 9 Vibration Transfer Path Analysis of Aeroengines Using Bond Graph Theory -- 9.1 Introduction -- 9.2 Overview of TPA Methodologies -- 9.2.1 Measuring Interface Loads Using the Classical TPA Approach -- 9.2.1.1 Mount Stiffness Measurement Technique -- 9.2.1.2 Matrix Inversion Method -- 9.2.2 Operational Path Analysis -- 9.2.2.1 OPA Theory -- 9.2.3 OPAX Method -- 9.2.4 Global Transfer Direct Transfer TPA Method -- 9.2.5 Bond Graph TPA Method -- 9.3 Bond Graph Formulation -- 9.3.1 Developing Bond Graphs -- 9.4 Bond Graph Modeling of an Aeroengine -- 9.4.1 Reduced Aeroengine Model -- 9.4.2 Aeroengine Bond Graph -- 9.4.3 State Space Equation of the Reduced Aeroengine -- 9.4.4 Sample Calculation: Output and Direct Transmissibility Matrices -- 9.5 Transmissibility Principle -- 9.6 Bond Graph Transfer Function -- 9.7 Aeroengine Global Transmissibility Formulation -- 9.8 Design Guidelines to Minimize Vibration Transfer -- 9.9 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 10 Structural Health Monitoring of Aeroengines Using Transmissibility and Bond Graph Methodology -- 10.1 Introduction -- 10.2 Fundamentals of Transmissibility Functions -- 10.3 Bond Graphs -- 10.3.1 Bond Graph Theory -- 10.3.2 Graphical Representation and Modeling of Bond Graphs -- 10.3.3 Determination of State‐Space Equations Using Bond Graph Theory -- 10.3.4 Determination of Transmissibility Functions Using the Bond Graph Concept -- 10.4 Structural Health Monitoring Damage Indicator Factors -- 10.5 Aircraft Aeroengine Parametric Modeling -- 10.6 Results and Discussion -- 10.7 Conclusion -- References -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Airplanes-Design and construction..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lightweight construction..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerospace engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moradi-Dastjerdi, Rasool</subfield><subfield code="d">1984-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1249083583</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Behdinan, Kamran</subfield><subfield code="t">Advanced Multifunctional Lightweight Aerostructures</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-119-75671-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844893</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6466102</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442741 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781119756736 9781119756729 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844893 |
oclc_num | 1236267403 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | ASME Press Wiley |
record_format | marc |
series2 | Wiley-ASME Press series |
spelling | Behdinan, Kamran 1961- Verfasser (DE-588)1249083133 aut Advanced multifunctional lightweight aerostructures design, development, and implementation Kamran Behdinan and Rasool Moradi-Dastjerdi [New York, NY, USA] ASME Press [2021] Hoboken, NJ, USA Wiley © 2021 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Wiley-ASME Press series Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Preface -- Biographies -- Part I Multi‐Disciplinary Modeling and Characterization -- Chapter 1 Layer Arrangement Impact on the Electromechanical Performance of a Five‐Layer Multifunctional Smart Sandwich Plate -- 1.1 Introduction -- 1.2 Modeling of 5LMSSP -- 1.2.1 Porous Layer -- 1.2.2 Nanocomposite Layers -- 1.2.3 Governing Equations -- 1.3 Mesh‐Free Solution -- 1.3.1 MLS Shape Function -- 1.3.2 Discretization of Domain -- 1.3.3 Essential Boundary Conditions (Mechanical Supports) -- 1.4 Numerical Results -- 1.4.1 Validation -- 1.4.2 Static Deflections in 5LMSSPs -- 1.5 Conclusions -- References -- Chapter 2 Heat Transfer Behavior of Graphene‐Reinforced Nanocomposite Sandwich Cylinders -- 2.1 Introduction -- 2.2 Modeling of Sandwich Cylinders -- 2.2.1 Dispersion of Graphene Sheets -- 2.2.2 Thermal Properties -- 2.2.3 Governing Thermal Equations -- 2.3 Mesh‐Free Formulations -- 2.4 Results and Discussion -- 2.4.1 Thermal Conductivity of Graphene/PE Nanocomposite -- 2.4.2 Verification -- 2.4.3 Heat Transfer Response -- 2.5 Conclusions -- References -- Chapter 3 Multiscale Methods for Lightweight Structure and Material Characterization -- 3.1 Introduction -- 3.2 Overview of Multiscale Methodologies and Applications -- 3.2.1 Hierarchical Methods -- 3.2.2 Concurrent Methods -- 3.3 Bridging Cell Method -- 3.4 Applications -- 3.4.1 Crack Propagation in Nickel Single Crystals -- 3.4.2 Aluminum-Carbon Nanotube Nanocomposite -- 3.4.3 Ceramic Composites -- 3.5 Multiscale Modeling of Lightweight Composites -- 3.5.1 Nano to Microscale: BCM -- 3.5.2 Micro to Macroscale: Cohesive Zone Modeling -- 3.6 Conclusion -- References -- Chapter 4 Characterization of Ultra‐High Temperature and Polymorphic Ceramics -- 4.1 Introduction -- 4.2 Crystalline Characterization of UHTCs 4.3 Chemical Characterization of a UHTC Composite -- 4.4 Polymeric Ceramic Crystalline Characterization -- 4.5 Multiscale Characterization of the Anatase-Rutile Transformation -- 4.6 Conclusion -- References -- Part II Multifunctional Lightweight Aerostructure Applications -- Chapter 5 Design Optimization of Multifunctional Aerospace Structures -- 5.1 Introduction -- 5.2 Multifunctional Structures -- 5.3 Computational Design and Optimization -- 5.4 Applications -- 5.4.1 Design Optimization of a Novel NLG Shimmy Damper -- 5.5 Conclusions -- References -- Chapter 6 Dynamic Modeling and Analysis of Nonlinear Flexible Rotors Supported by Viscoelastic Bearings -- 6.1 Introduction -- 6.2 Dynamic Modeling -- 6.2.1 Equations of Motion and Method of Solution -- 6.2.2 Force Transmissibility -- 6.2.3 Method of Solution -- 6.3 Free Vibration Characteristics -- 6.4 Nonlinear Frequency Response -- 6.5 Conclusions -- References -- Chapter 7 Modeling and Experimentation of Temperature Calculations for Belt Drive Transmission Systems in the Aviation Industry -- 7.1 Introduction -- 7.2 Analytical-Numerical Thermal Model -- 7.2.1 Creation of the Analytical Thermal Model -- 7.2.2 Belt Thermal Analysis -- 7.2.3 Heat Exchange at the Pulley-Belt Contact Surfaces -- 7.2.4 Pulley Internal Thermal Analysis -- 7.2.4.1 Mathematical Algorithm -- 7.2.4.2 Numerical Method -- 7.2.5 Overall Structure -- 7.3 Experimental Setup -- 7.3.1 Operating Conditions -- 7.3.2 Belt Drive Layout -- 7.3.3 Equipment Setup -- 7.4 Results and Discussion -- 7.4.1 Verification of the Belt's Uniform Temperature -- 7.4.2 Verification of Curve of En(ωpn) -- 7.4.3 Model Verification -- 7.4.4 Temperature Plot Verification -- 7.5 Conclusion -- References -- Chapter 8 An Efficient Far‐Field Noise Prediction Framework for the Next Generation of Aircraft Landing Gear Designs -- 8.1 Introduction and Background 8.1.1 Numerical Landing Gear Aeroacoustics -- 8.1.2 Problem Statement -- 8.2 Modeling and Numerical Method -- 8.2.1 Hybrid Computational Aeroacoustic Method -- 8.2.2 Near‐Field Flow Numerical Method -- 8.2.3 Far‐Field Acoustic Numerical Method -- 8.2.3.1 Acoustic Analogies Formulation -- 8.2.3.2 Ffowcs Williams and Hawkings Equation -- 8.2.4 The Motivation of the Multiple Two‐Dimensional Simulations Method -- 8.2.5 New Approach for Noise Calculation at the Far‐Field of LG -- 8.3 Implementation of the Multiple Two‐Dimensional Simulations Method -- 8.3.1 2D CFD Setup -- 8.3.2 Computation of Acoustic at Far‐Field -- 8.4 Results and Discussion -- 8.4.1 The Effects of the Receiver Locations -- 8.4.2 The Effects of the Acoustic Source -- 8.4.3 The LAGOON NLG Overall Far‐Field Acoustic Results -- 8.5 Summary and Conclusions -- References -- Chapter 9 Vibration Transfer Path Analysis of Aeroengines Using Bond Graph Theory -- 9.1 Introduction -- 9.2 Overview of TPA Methodologies -- 9.2.1 Measuring Interface Loads Using the Classical TPA Approach -- 9.2.1.1 Mount Stiffness Measurement Technique -- 9.2.1.2 Matrix Inversion Method -- 9.2.2 Operational Path Analysis -- 9.2.2.1 OPA Theory -- 9.2.3 OPAX Method -- 9.2.4 Global Transfer Direct Transfer TPA Method -- 9.2.5 Bond Graph TPA Method -- 9.3 Bond Graph Formulation -- 9.3.1 Developing Bond Graphs -- 9.4 Bond Graph Modeling of an Aeroengine -- 9.4.1 Reduced Aeroengine Model -- 9.4.2 Aeroengine Bond Graph -- 9.4.3 State Space Equation of the Reduced Aeroengine -- 9.4.4 Sample Calculation: Output and Direct Transmissibility Matrices -- 9.5 Transmissibility Principle -- 9.6 Bond Graph Transfer Function -- 9.7 Aeroengine Global Transmissibility Formulation -- 9.8 Design Guidelines to Minimize Vibration Transfer -- 9.9 Conclusion -- References Chapter 10 Structural Health Monitoring of Aeroengines Using Transmissibility and Bond Graph Methodology -- 10.1 Introduction -- 10.2 Fundamentals of Transmissibility Functions -- 10.3 Bond Graphs -- 10.3.1 Bond Graph Theory -- 10.3.2 Graphical Representation and Modeling of Bond Graphs -- 10.3.3 Determination of State‐Space Equations Using Bond Graph Theory -- 10.3.4 Determination of Transmissibility Functions Using the Bond Graph Concept -- 10.4 Structural Health Monitoring Damage Indicator Factors -- 10.5 Aircraft Aeroengine Parametric Modeling -- 10.6 Results and Discussion -- 10.7 Conclusion -- References -- Index -- EULA. Airplanes-Design and construction.. Lightweight construction.. Aerospace engineering Moradi-Dastjerdi, Rasool 1984- Verfasser (DE-588)1249083583 aut Erscheint auch als Behdinan, Kamran Advanced Multifunctional Lightweight Aerostructures Newark : John Wiley & Sons, Incorporated,c2021 Druck-Ausgabe, Hardcover 978-1-119-75671-2 |
spellingShingle | Behdinan, Kamran 1961- Moradi-Dastjerdi, Rasool 1984- Advanced multifunctional lightweight aerostructures design, development, and implementation Cover -- Title Page -- Copyright -- Contents -- Preface -- Biographies -- Part I Multi‐Disciplinary Modeling and Characterization -- Chapter 1 Layer Arrangement Impact on the Electromechanical Performance of a Five‐Layer Multifunctional Smart Sandwich Plate -- 1.1 Introduction -- 1.2 Modeling of 5LMSSP -- 1.2.1 Porous Layer -- 1.2.2 Nanocomposite Layers -- 1.2.3 Governing Equations -- 1.3 Mesh‐Free Solution -- 1.3.1 MLS Shape Function -- 1.3.2 Discretization of Domain -- 1.3.3 Essential Boundary Conditions (Mechanical Supports) -- 1.4 Numerical Results -- 1.4.1 Validation -- 1.4.2 Static Deflections in 5LMSSPs -- 1.5 Conclusions -- References -- Chapter 2 Heat Transfer Behavior of Graphene‐Reinforced Nanocomposite Sandwich Cylinders -- 2.1 Introduction -- 2.2 Modeling of Sandwich Cylinders -- 2.2.1 Dispersion of Graphene Sheets -- 2.2.2 Thermal Properties -- 2.2.3 Governing Thermal Equations -- 2.3 Mesh‐Free Formulations -- 2.4 Results and Discussion -- 2.4.1 Thermal Conductivity of Graphene/PE Nanocomposite -- 2.4.2 Verification -- 2.4.3 Heat Transfer Response -- 2.5 Conclusions -- References -- Chapter 3 Multiscale Methods for Lightweight Structure and Material Characterization -- 3.1 Introduction -- 3.2 Overview of Multiscale Methodologies and Applications -- 3.2.1 Hierarchical Methods -- 3.2.2 Concurrent Methods -- 3.3 Bridging Cell Method -- 3.4 Applications -- 3.4.1 Crack Propagation in Nickel Single Crystals -- 3.4.2 Aluminum-Carbon Nanotube Nanocomposite -- 3.4.3 Ceramic Composites -- 3.5 Multiscale Modeling of Lightweight Composites -- 3.5.1 Nano to Microscale: BCM -- 3.5.2 Micro to Macroscale: Cohesive Zone Modeling -- 3.6 Conclusion -- References -- Chapter 4 Characterization of Ultra‐High Temperature and Polymorphic Ceramics -- 4.1 Introduction -- 4.2 Crystalline Characterization of UHTCs 4.3 Chemical Characterization of a UHTC Composite -- 4.4 Polymeric Ceramic Crystalline Characterization -- 4.5 Multiscale Characterization of the Anatase-Rutile Transformation -- 4.6 Conclusion -- References -- Part II Multifunctional Lightweight Aerostructure Applications -- Chapter 5 Design Optimization of Multifunctional Aerospace Structures -- 5.1 Introduction -- 5.2 Multifunctional Structures -- 5.3 Computational Design and Optimization -- 5.4 Applications -- 5.4.1 Design Optimization of a Novel NLG Shimmy Damper -- 5.5 Conclusions -- References -- Chapter 6 Dynamic Modeling and Analysis of Nonlinear Flexible Rotors Supported by Viscoelastic Bearings -- 6.1 Introduction -- 6.2 Dynamic Modeling -- 6.2.1 Equations of Motion and Method of Solution -- 6.2.2 Force Transmissibility -- 6.2.3 Method of Solution -- 6.3 Free Vibration Characteristics -- 6.4 Nonlinear Frequency Response -- 6.5 Conclusions -- References -- Chapter 7 Modeling and Experimentation of Temperature Calculations for Belt Drive Transmission Systems in the Aviation Industry -- 7.1 Introduction -- 7.2 Analytical-Numerical Thermal Model -- 7.2.1 Creation of the Analytical Thermal Model -- 7.2.2 Belt Thermal Analysis -- 7.2.3 Heat Exchange at the Pulley-Belt Contact Surfaces -- 7.2.4 Pulley Internal Thermal Analysis -- 7.2.4.1 Mathematical Algorithm -- 7.2.4.2 Numerical Method -- 7.2.5 Overall Structure -- 7.3 Experimental Setup -- 7.3.1 Operating Conditions -- 7.3.2 Belt Drive Layout -- 7.3.3 Equipment Setup -- 7.4 Results and Discussion -- 7.4.1 Verification of the Belt's Uniform Temperature -- 7.4.2 Verification of Curve of En(ωpn) -- 7.4.3 Model Verification -- 7.4.4 Temperature Plot Verification -- 7.5 Conclusion -- References -- Chapter 8 An Efficient Far‐Field Noise Prediction Framework for the Next Generation of Aircraft Landing Gear Designs -- 8.1 Introduction and Background 8.1.1 Numerical Landing Gear Aeroacoustics -- 8.1.2 Problem Statement -- 8.2 Modeling and Numerical Method -- 8.2.1 Hybrid Computational Aeroacoustic Method -- 8.2.2 Near‐Field Flow Numerical Method -- 8.2.3 Far‐Field Acoustic Numerical Method -- 8.2.3.1 Acoustic Analogies Formulation -- 8.2.3.2 Ffowcs Williams and Hawkings Equation -- 8.2.4 The Motivation of the Multiple Two‐Dimensional Simulations Method -- 8.2.5 New Approach for Noise Calculation at the Far‐Field of LG -- 8.3 Implementation of the Multiple Two‐Dimensional Simulations Method -- 8.3.1 2D CFD Setup -- 8.3.2 Computation of Acoustic at Far‐Field -- 8.4 Results and Discussion -- 8.4.1 The Effects of the Receiver Locations -- 8.4.2 The Effects of the Acoustic Source -- 8.4.3 The LAGOON NLG Overall Far‐Field Acoustic Results -- 8.5 Summary and Conclusions -- References -- Chapter 9 Vibration Transfer Path Analysis of Aeroengines Using Bond Graph Theory -- 9.1 Introduction -- 9.2 Overview of TPA Methodologies -- 9.2.1 Measuring Interface Loads Using the Classical TPA Approach -- 9.2.1.1 Mount Stiffness Measurement Technique -- 9.2.1.2 Matrix Inversion Method -- 9.2.2 Operational Path Analysis -- 9.2.2.1 OPA Theory -- 9.2.3 OPAX Method -- 9.2.4 Global Transfer Direct Transfer TPA Method -- 9.2.5 Bond Graph TPA Method -- 9.3 Bond Graph Formulation -- 9.3.1 Developing Bond Graphs -- 9.4 Bond Graph Modeling of an Aeroengine -- 9.4.1 Reduced Aeroengine Model -- 9.4.2 Aeroengine Bond Graph -- 9.4.3 State Space Equation of the Reduced Aeroengine -- 9.4.4 Sample Calculation: Output and Direct Transmissibility Matrices -- 9.5 Transmissibility Principle -- 9.6 Bond Graph Transfer Function -- 9.7 Aeroengine Global Transmissibility Formulation -- 9.8 Design Guidelines to Minimize Vibration Transfer -- 9.9 Conclusion -- References Chapter 10 Structural Health Monitoring of Aeroengines Using Transmissibility and Bond Graph Methodology -- 10.1 Introduction -- 10.2 Fundamentals of Transmissibility Functions -- 10.3 Bond Graphs -- 10.3.1 Bond Graph Theory -- 10.3.2 Graphical Representation and Modeling of Bond Graphs -- 10.3.3 Determination of State‐Space Equations Using Bond Graph Theory -- 10.3.4 Determination of Transmissibility Functions Using the Bond Graph Concept -- 10.4 Structural Health Monitoring Damage Indicator Factors -- 10.5 Aircraft Aeroengine Parametric Modeling -- 10.6 Results and Discussion -- 10.7 Conclusion -- References -- Index -- EULA. Airplanes-Design and construction.. Lightweight construction.. Aerospace engineering |
title | Advanced multifunctional lightweight aerostructures design, development, and implementation |
title_auth | Advanced multifunctional lightweight aerostructures design, development, and implementation |
title_exact_search | Advanced multifunctional lightweight aerostructures design, development, and implementation |
title_exact_search_txtP | Advanced multifunctional lightweight aerostructures design, development, and implementation |
title_full | Advanced multifunctional lightweight aerostructures design, development, and implementation Kamran Behdinan and Rasool Moradi-Dastjerdi |
title_fullStr | Advanced multifunctional lightweight aerostructures design, development, and implementation Kamran Behdinan and Rasool Moradi-Dastjerdi |
title_full_unstemmed | Advanced multifunctional lightweight aerostructures design, development, and implementation Kamran Behdinan and Rasool Moradi-Dastjerdi |
title_short | Advanced multifunctional lightweight aerostructures |
title_sort | advanced multifunctional lightweight aerostructures design development and implementation |
title_sub | design, development, and implementation |
topic | Airplanes-Design and construction.. Lightweight construction.. Aerospace engineering |
topic_facet | Airplanes-Design and construction.. Lightweight construction.. Aerospace engineering |
work_keys_str_mv | AT behdinankamran advancedmultifunctionallightweightaerostructuresdesigndevelopmentandimplementation AT moradidastjerdirasool advancedmultifunctionallightweightaerostructuresdesigndevelopmentandimplementation |